一、不同进路间距地压监测及模拟显现分析(论文文献综述)
刘斌[1](2021)在《华亭煤矿采掘工作面冲击危险性评价及防治技术研究》文中进行了进一步梳理随着世界范围内煤炭资源逐渐转入深度开采阶段,煤炭企业所面临的灾害影响越来越多,尤其因冲击地压灾害带来的人身伤亡和财产损失极大的威胁生产安全,是矿井急需加以管控的重大风险灾害。华亭煤矿2501采区自开展采掘活动以来冲击地压事件一直十分活跃,致使巷道底鼓、顶板下沉、支护失效、大型设备位移等现象突出,甚至出现人身伤亡,对矿井造成了巨大的经济损失和安全隐患。为解决矿井冲击地压频发的问题,本论文采用了理论分析、现场监测、数值分析等方法,对华亭煤矿采掘工作面冲击危险性及其解危措施进行研究。综合分析冲击地压危险的地质条件与开采技术影响因素,根据多因素耦合划分了冲击危险区;以叠加理论为基础分析影响冲击地压发生的力源并得出研究区域以动载为主且主要来源于临空区覆岩破断;基于综合指数评价对250102-2工作面位于上分层保护层和煤柱下方的重点区域及上分层250107-1准备工作面两巷掘进期间冲击危险性进行评价,运用多因素耦合判定危险程度并划分危险区;对工作面区段煤柱留设、确定合理的推进速度以及巷道支护等方面从防冲角度进行优化,进一步降低人为因素对矿井冲击地压的影响。根据矿井实际提出对静动载同时监测区域局部相结合的综合监测预警技术,确定监测预警指标综合评判冲击危险性并实施以钻孔卸压、爆破卸压为主的针对性防治措施,通过选取相邻或相似工作面对比冲击地压破坏程度,对综合防治效果进行了检验,得出采掘工作面冲击地压破坏程度显着降低,在冲击地压灾害的预防和治理方面取得一定成果。
王博[2](2021)在《陕蒙深部矿区典型动力灾害发生机理及防治研究》文中研究说明陕蒙浅部矿区采深普遍为53~280m,而其深部矿区采深已普遍超过580m,且近年来开采深度以每年数十米的速度增加。根据现场调研,陕蒙深部矿区具有开采强度大、煤层冲击倾向性强、顶板存在大范围富水区和厚硬砂岩组等特点,部分矿井开采过程中已发生十余起冲击地压、矿震等动力灾害,严重制约了矿区的安全、高效生产。针对陕蒙深部矿区动力显现频发的现状,本文以该地区近年来发生的几起典型动力灾害为研究背景,采用案例调研、理论分析、相似模拟实验、数值模拟和现场实测等方法,开展了陕蒙深部矿区典型动力灾害(冲击地压和矿震)发生机理及防治研究工作,取得如下成果:(1)调研分析了陕蒙深部矿区开采条件与动力灾害特征,确定了形成动力灾害的力源类型,并据此将动力灾害划分为采动疏水应力叠加型冲击地压、宽区段煤柱应力叠加型冲击地压和隔离煤柱区硬岩破断型矿震。(2)分别建立了疏水转移应力和高强度开采支承压力分布力学模型,研究了疏水及高强度开采对工作面应力分布规律的影响,揭示了陕蒙深部矿井采动疏水应力叠加诱冲机理:疏水后形成增压区和卸压区,当工作面快速推采至疏水形成的增压区时,采动应力与增压区应力叠加后超过冲击地压发生的临界值,是诱发冲击的主要原因。在此基础上预测了疏水前后冲击危险区的动态变化,提出了疏水区基于防冲的推采速度动态调控方法。(3)研究了该矿区典型开采条件下不同埋深和不同宽度区段煤柱应力分布规律,分析了特定条件下宽区段煤柱破坏分区特征,建立了宽区段煤柱冲击力学模型并给出了宽区段煤柱诱发冲击的力学判别条件,揭示了宽区段煤柱应力叠加诱冲机理,并据此提出了该地区宽区段煤柱冲击地压防治对策和下阶段基于防冲的窄煤柱宽度设计方法。(4)分别建立了煤柱支撑条件下关键层挠曲变形力学模型和隔离煤柱压缩量估算模型,给出了关键层挠曲破断诱发矿震的判别条件,揭示了陕蒙深部矿井隔离煤柱区硬岩破断诱发矿震机理,提出了冲击地压和矿震协同控制的合理隔离煤柱宽度设计方法。研究成果已在陕蒙深部纳林河、呼吉尔特矿区3对冲击地压矿井现场应用,效果良好。
牟宏伟[3](2021)在《近距离煤层群开采强矿压显现机理及监测预警技术研究》文中认为近距离煤层群由于其特殊的煤岩赋存条件和重复开采扰动,导致动静载叠加诱发强矿压显现的机理复杂,给矿山安全生产和强矿压显现监测预警带来了新的挑战,亟需研究诱发近距离煤层群开采强矿压显现的动静载作用机制并建立适用的监测预警方法。为此,论文综合采用现场调研、理论分析、数值模拟及工程实践等方法,开展了近距离煤层群强矿压显现机理及监测预警技术研究。主要取得如下成果:(1)以忻州窑矿为例研究了近距离煤层群强矿压显现特征及主要影响因素。下煤层开采强矿压显现受上覆遗留煤柱和采空区影响较大,强矿压显现主要位于上覆遗留煤柱下的临空巷道,且在上覆不规则遗留煤柱交叉位置更为严重;大能量矿震主要集中在上煤层,且呈现出与上覆遗留煤柱位置高度相关的分区特征。由于多数大能量矿震离下煤层采掘空间较远,下煤层受远场动载扰动影响较小,强矿压显现主要表现为两帮移近、底鼓和顶板下沉,未见大范围的冲击破坏。(2)研究构建了上覆遗留煤柱下临空巷道多源静载力学模型,得出了各静载力源对应力集中的贡献程度。实例计算表明:临空巷道正上方的遗留煤柱是导致应力集中的主要因素,正上方煤柱传递了 78.3%的应力,侧向支承压力传递了 16%的应力,峰值应力是原始自重应力的1.8倍。构建了下煤层开采诱发远场动载的理论判据,当上煤层开采引起底板的损伤范围和下煤层开采引起顶板的损伤范围贯通时,开采下煤层易诱发上煤层覆岩二次失稳和遗留煤柱破坏,并产生远场大能量动载扰动。(3)研究揭示了近距离煤层群开采区域动载和局部静载综合作用机制,建立了考虑震动波衰减的区域动载-局部静载综合诱发强矿压显现的判别准则。研究结果表明:在煤层未开采条件下震动波传播符合指数形式衰减。近距离煤层群采空区和层间塑性区会加剧震动波的衰减,并且随层间塑性区范围和破坏程度加大,对震动波衰减的影响也越大;引起下煤层临空巷道强矿压显现的主要因素是多源静载应力集中和近场动载扰动,而发生在上煤层顶板或遗留煤柱区域的动载离下煤层采掘空间较远,同时又穿过采空区及塑性破坏区,对采掘空间产生的扰动破坏较小。动载到采掘空间的距离是动静载叠加诱发近距离煤层群强矿压显现的重要影响因素。(4)微震事件具有与近距离煤层群空间覆岩结构高度相关的分区及时空聚集特征,大能量微震事件前微震频次均值和滑动均值有明显的先下降再上升的趋势。电磁辐射和支架应力能反应局部应力集中程度。基于此,构建了预测区域动载发生时间和位置的微震离散度、加权中心位置、频次比指标,以及监测局部静载应力集中危险程度的电磁辐射幅值和脉冲数超限幅度、支架应力超限幅度指标。基于微震加权中心位置和区域动载到采掘空间的衰减规律,建立了区域动载对局部采掘空间影响权重的计算方法,并基于考虑震动波衰减的区域动载-局部静载综合诱发强矿压显现的判别准则建立了近距离煤层群强矿压显现区域-局部集成预警方法。将上述成果在忻州窑矿进行了现场应用与验证,结果表明微震频次比、离散度和加权中心位置指标可对大能量微震进行实时预警和空间位置预测。区域-局部集成预警结果与现场巷道变形破坏的记录以及震动波CT探测结果高度一致,该方法能够及时有效预警强矿压显现发生。研究成果提高了近距离煤层群强矿压显现预警的可靠性及防治的针对性。该论文有图89幅,表18个,参考文献208篇。
雷国荣[4](2021)在《双采矿方法协同开采条件下采场稳定性监测与分析》文中研究说明某矿西二采区原采用双中段同时回采的下向分层胶结充填法进行回采,但由于上部中段充填法采场大面积胶结充填意外垮塌导致开采技术条件的改变,加之近年来矿产品价格波动较大、充填法采矿成本较高,致使矿山濒临亏损,上部中段剩余的矿产资源不再适用下向分层进路式胶结充填法采矿。结合生产实际及需求,矿山在经过一系列深入分析研究之后,决定将上部中段余下矿体改为无底柱分段崩落法进行开采,而下部中段矿体继续采用充填法开采,由此在同一采区内形成了崩落法与充填法协同开采的复杂局面。确保各采场的稳定性是实现西二采区崩落法与充填法安全高效协同开采的前提。本文采用数值模拟实验、微地震监测、采场围岩位移监测及爆破振动监测等研究手段,对西二采区崩落法与充填法协同开采过程中采场稳定性进行分析及研究,主要开展的工作及成果如下:(1)利用FLAC3D软件对上部中段崩落法采场回采过程进行了数值模拟,探明了崩落法采场地压时空演化规律及特征,并根据进路围岩受力状态分析得出崩落法回采时回采进路能保持较好的稳定性。同时,通过数值模拟获取了崩落法与充填法协同开采过程中下部胶结充填体应力、位移等变化规律及特征,分析得出下部胶结充填体在协同开采过程中整体较为稳定。此外,模拟计算了下部充填法采场间柱的受力状态,模拟结果表明下部充填法采场间柱受力不会超过间柱的承载强度,间柱较为稳定。(2)通过微地震监测数据分析,确定了采区开采过程中采场微地震事件时空效应。监测结果表明岩体破裂主要发生在上部崩落法采场崩落区域之上的原胶结充填体顶板,说明上部中段原采用充填法开采形成的胶结充填体顶板逐步冒落形成覆盖层,覆盖层的形成达到了上部崩落法采矿工艺的安全要求。其他区域没有明显破裂事件发生,崩落法采场、下部胶结充填体及下部充填法采场是相对稳定的。(3)对崩落法采场回采进路围岩进行位移监测,基于监测数据探明了回采进路围岩在崩落回采过程的位移特征。此外,监测结果表明回采期间进路位移量及日均位移量较小,崩落回采对后方进路稳定性影响较小,崩落法采场回采进路较为稳定。(4)通过爆破振动监测数据分析得出上部矿体崩落法中深孔爆破对下部矿体充填法采场胶结充填顶板的爆破振动强度小于充填法采场自身正常生产的浅孔爆破振动强度,并且产生的爆破振动破坏效应较小,崩落法中深孔爆破未对下部充填法采场胶结充填体顶板稳定性产生不利影响。通过以上研究,分析、评价了西二采区崩落法与充填法协同开采时,上部崩落法采场、下部充填法采场及下部胶结充填体的稳定性,研究结果可指导矿山安全生产。
陈洋[5](2021)在《深井条带充填开采冲击地压发生机理与防治研究》文中研究指明冲击地压矿井条带工作面的安全开采一直是冲击地压领域的研究热点和难点,充填开采是防治条带工作面冲击地压的有效手段。本文以鲁西南矿区深井条带充填开采工作面为背景,采用理论分析、相似材料模拟、数值模拟、工程类比、现场实测等手段,针对定量分析充填开采防冲有效性、深井条带充填开采工作面冲击危险评价方法和防治技术等方面进行了研究和探索,并在运河煤矿进行工程应用。论文主要成果如下:(1)探索了基于“等价采高”描述充填开采效应进而分析覆岩结构演化规律的方法,得到充填工作面覆岩结构运动具有明显的时空滞后性和边界效应的结论;以分析煤体力源特征为主线,研究了“充实率-覆岩结构运动-支承压力演变”三者之间动态转化的力学关系,建立了深井条带充填开采工作面支承压力估算模型,并在C5301工作面进行了可靠性验证。(2)设计了基于等价采高原理的条带充填开采工作面相似模拟试验模型。当等价采高小于0.8m时,采空区顶板只发生弯曲下沉,对工作面煤体施加的动应力最小;当等价采高介于0.8~2.6m之间时,工作面的冲击危险性与等价采高呈明显的正相关性;当等价采高大于2.6m后,覆岩结构发生大范围调整,条带充填工作面的冲击危险达到最大。(3)提出了减冲临界充实率的概念。充实率决定了覆岩运动对煤体的加载效应,当达到减冲临界充实率时,充填有效抑制覆岩运动并实现煤体总应力小于冲击临界应力,充填降低甚至消除了冲击危险;当小于减冲临界充实率时,煤体总应力大于冲击临界应力,表明条带充填工作面仍具有冲击危险。(4)建立了煤体应力比、条带煤柱应力比和弹性能量指数对冲击危险性的隶属度函数,形成了冲击危险等级划分的指标,提出了深井条带充填开采工作面局部、整体冲击危险评价方法。(5)提出了以条带煤柱可采性研究、区段煤柱合理宽度留设和控制充实率为核心的深井条带充填工作面的防冲技术体系,并在C8301条带充填工作面进行了验证。实践表明,提出的防冲技术体系可行、有效,能够保障深井条带充填开采工作面的防冲安全。上述研究成果已经在鲁西南矿区逐步推广应用,取得了良好经济效益和社会效益。
夏志远[6](2021)在《自然崩落法矿山底部结构失稳机理及防治措施研究》文中研究指明自然崩落采矿法作为一种大规模、低成本、高效率的地下采矿方法,在条件允许的情况下,是深地矿产资源大规模高效开采的首选方法,受到了国际采矿界越来越广泛的关注。自然崩落法矿山的底部结构承担着采场出矿任务,所有矿石都需经底部结构运出采场,保障底部结构安全稳定是自然崩落法成功运用的关键因素之一。由于自然崩落法开采的特殊性,底部结构服务年限长且处于复杂变化的高应力环境,导致底部结构维护难度大,失稳破坏风险高。因此,揭示自然崩落法矿山底部结构失稳发生和演变机理,并提出失稳防治措施,具有重要理论意义和工程价值。本文以国内典型自然崩落法矿山铜矿峪矿为工程背景,采用现场调研、室内试验、数值仿真模拟和力学理论分析等多种方法综合研究了自然崩落法矿山底部结构三种常见失稳类型的发生和演变机理,并针对失稳机理的不同分别提出了防治措施,主要研究内容和结论如下:1)开展了铜矿峪矿现场底部结构失稳特征调研与失稳时空演化过程分析,揭示了铜矿峪矿530中段底部结构失稳发生和演变的普遍规律,主要结论包括:底部结构失稳区域有相当大的比例发生在拉底推进线前方20~30m范围内;随着拉底推进,一些底部结构失稳区域修复后会呈现反复失稳;副层地压显现受主层开采影响严重,尤其是位于拉底推进线前方的底部结构易出现失稳;拉底过程中,在桃型矿柱尖部上方易形成残留矿柱,表现为局部出矿穿脉顶板地压显现强烈,附近聚矿沟呈现“少矿无矿”的现象。2)基于压力拱理论、薄板理论和散体应力拱理论对底部结构全生命周期受力过程进行力学解析,通过建立底部结构全生命周期受力数值仿真模型,研究了底部结构从巷道掘进开始到出矿结束的全生命周期应力和位移演化规律,揭示了铜矿峪矿底部结构全生命周期失稳机理,主要结论如下:拉底推进线前方底部结构受采场空间围岩压力拱作用易产生压应力集中,随着拉底面积增加,压应力集中程度逐渐增强,当达到底部结构岩体剪切破坏条件时,就会产生地压破坏现象;随着拉底推进,推进线前方的底部结构逐渐转移到拉底空间下方,此时底部结构压应力集中得到释放,但在高水平构造应力和垂直应力的共同作用下,底部结构发生向上的挠曲变形,出矿穿脉侧帮和桃型矿柱尖部逐渐呈现拉应力集中,随着拉底面积增加,拉应力集中程度逐渐增强,当超过底部结构抗拉强度时,再次产生地压破坏现象,所以底部结构会呈现反复失稳的地压现象;拉底后尽快促使上覆矿岩崩落,有助于释放拉底推进线前方出矿巷道集中的压应力,以及拉底空间下方桃型矿柱尖部和出矿巷道两帮的拉应力,从而降低底部结构失稳发生概率。3)构建了主副层联合开采底部结构受力数值仿真模型,研究了主层开采扰动下副层底部结构应力和位移演化特征和规律,揭示了副层底部结构失稳机理,主要结论如下:主层拉底推进和上覆矿岩崩落加剧了副层拉底推进线前方底部结构压应力集中,使其更易达到岩体剪切破坏条件,从而增大了副层推进线前方底部结构失稳发生概率;主层拉底推进和上覆矿岩崩落降低了副层拉底空间下方底部结构竖直向上挠曲变形和拉应力集中,使其不易超过岩体抗拉强度,降低了副层底部结构反复失稳概率。4)构建了拉底不良底部结构受力数值仿真模型,研究了残留矿柱扰动下底部结构应力和位移演化特征和规律,揭示了拉底不良诱发底部结构失稳机理,结果表明:残留矿柱下方桃型矿柱产生较高压应力集中,随着拉底面积增加桃型矿柱尖部压应力持续升高,如果达到岩体剪切破坏条件就会造成桃型矿柱失稳;残留矿柱下方出矿水平地压破坏易发生在出矿穿脉顶板,而正常拉底区域地压破坏易发生在出矿穿脉侧帮;随着拉底推进,残留矿柱下方底部结构呈现“上部受压,下部受拉”的应力分布状态;残留矿柱附近的上覆矿岩处于拉应力释放区域,不利于上覆矿岩的崩落,造成聚矿沟无破碎矿石出现。5)研究了铜矿峪矿微震监测系统布设方案,确定了 410中段和530中段的传感器位置坐标,经过定位精度的模拟分析,满足定位误差和系统灵敏度要求,可实现底部结构失稳监测预警任务。6)分别针对三种不同类型底部结构失稳的发生和演化机理,开展了防治措施研究,主要结论如下:提出了出矿巷道锚网索喷与底板混凝土反拱的联合支护新形式,有效地控制了出矿巷道围岩的松动变形,提高了底部结构的整体强度,增加了底部结构的稳定性;提出了主层后拉底与副层预拉底相结合的拉底方式,不但可保证主层快速投产,而且改善了副层底部结构应力状态;提出了适当增加桃型矿柱尖部上方拉底高度,将桃型矿柱两侧拉底巷道中间的拉底区域作为一个爆破单元同时爆破的措施,从而减小爆破夹制作用,避免残留矿柱的形成。
何生全[7](2021)在《近直立煤层群综放开采冲击地压机理及预警技术研究》文中指出近直立煤层群由于特殊的煤岩赋存和开采方式,覆岩破断运动及其导致的围岩静载应力分布和动载扰动特征与缓倾斜煤层有较大差异,冲击地压灾害严重,给矿山安全生产带来了挑战。为指导近直立煤层冲击地压防治,系统研究冲击地压机理和预警问题具有理论和实用价值。为此,论文采用实验室试验、现场监测、数值模拟、理论分析及工程实践等方法,对近直立煤层群综放充填开采冲击地压机理及监测预警展开研究。研究分析了乌东煤矿87°近直立煤层群综放充填开采冲击显现特征及诱冲因素。冲击地压全部发生在先开采的B3+6工作面;冲击显现以回采巷道为主,位于综放面前方0~209m,单次冲击破坏范围为75~418 m;顶底板巷破坏呈非对称性和方向性,其中顶板巷以顶板侧巷道肩角下沉、帮鼓及顶板下沉为主,底板巷以岩柱侧南帮底角底鼓和帮鼓为主;破坏较同采方法的东部典型水平和缓倾斜煤层严重。微震事件、冲击震源及高波速区位于工作面附近煤体受压撬作用区域的悬顶和岩柱;综采诱发充填体下沉,地表煤层顶板和岩柱有向采空区拉裂现象;煤体所受的压撬应力是诱发冲击的基础静载力源,构造应力、充填体下沉及悬顶和层间岩柱破裂产生的动载扰动对冲击显现有重要诱发作用。研究了近直立煤层群开采静载应力分布规律。煤层群围岩应力场呈现非对称分布特征,B3+6煤层走向水平应力峰值位于超前工作面20.7 m,倾向距综放面顶部39.3 m,都大于B1+2煤层;综采诱发顶板和岩柱向采空区运移,对煤体施加较大的压撬作用,顶板水平和垂向位移分别是岩柱的10倍和3.5倍,顶板侧煤体下沉现象较岩柱侧明显;除B3+6煤层应力集中程度与充填材料密度呈负相关关系外,煤层群应力集中程度与采深、充填材料密度、侧压力系数及煤层倾角呈正相关;近直立煤层群相对其它倾角煤层悬空顶板和岩柱结构相对完整未破断。建立了震动位移场方程,推导了同步压缩变换函数,研究了近直立煤层群诱冲动载作用规律。介质类型影响震动波传播,同一地层呈现各向同性衰减,巷道围岩受震动波作用发生应力升高并最终卸压发生破坏,S波造成的破坏显着大于P波,受震源位置影响破坏呈明显的由北向南的方向性,巷道破坏呈非对称;岩体破裂产生的动载扰动对诱发近直立煤层冲击地压具有重要作用。构建了悬空结构走向和倾向物理力学模型,推导得到了模型的弹性变形能分布函数,研究揭示了近直立煤层群充填开采条件下冲击地压机理。充填长度和充填体反力影响基本顶和层间岩柱走向岩梁组合支撑结构稳定性和工作面区域应力场;围岩能量分布受煤层倾角、侧压力系数、支护力系数及结构悬空长度影响,压撬区弹性能最大,压撬区域顶板和岩柱有发生破裂并产生动载荷的能力,悬空顶板和岩柱结构是静载源和动载源的主要来源;得到了冲击地压致灾过程模型,冲击地压机理为:悬空顶板挤压破裂诱冲机理、悬空岩柱撬转破裂诱冲机理及压撬效应耦合诱冲机理。研究构建了适用于近直立煤层群的冲击危险预警指标体系,建立了多指标集成预警模型。应用结果表明:各指标对冲击危险具有明显的响应特征,近直立煤层群时空预警指标前兆特征演化规律与水平/缓倾斜煤层存在差异,多指标集成预警方法能够及时预警冲击危险,解决了各系统各自为政,预警结果独立的问题,提高了预警准确性。研究成果为类似赋存条件煤层群安全开采提供了理论和技术支撑。该论文有图125幅,表15个,参考文献282篇。
魏忠奎[8](2020)在《田陈煤矿3下7123工作面覆岩结构运动规律及灾害控制研究》文中提出近年来,我国浅部煤炭资源的日益枯竭,东部矿区逐步进入深部开采。随着我国煤矿开采技术水平和煤机机械装备制造水平的明显提升,我国煤矿井工开采长壁工作面的宽度亦呈增大趋势。超长工作面开采过程中来压剧烈,主要表现为超长工作面更容易出现煤壁片帮、支架阻力过大,甚至会发生煤与瓦斯突出和冲击地压等煤岩动力学灾害。本文以田陈煤矿3下7123工作面为研究对象,研究了3下7123超长工作面覆岩结构运动规律及灾害控制措施。通过数值计算、物理相似模拟实验、现场监测和工业性试验等研究手段和技术方法,研究了3下7123超长工作面覆岩运移规律和工作面支承压力分布规律,探索了超长工作面开采过程中的冲击地压防治措施,根据工作面的实际工程条件实施了工作面冲击地压防控措施,保证了工作面安全开采,取得了良好的应用效果。论文主要取得了以下研究成果:(1)通过采用数值模拟的方法研究了工作面斜长200 m、360 m时,得到了工作面超前支承压力演化的特征。工作面斜长由200 m增大到360 m时,工作面“见方”时的超前支承压力由42.24 MPa增大到58.17 MPa,应力集中系数由2.82增大到3.88,工作面的最大超前支承压力位置由4.5 m增大到了5.5 m,增大了影响范围。(2)现场实测了工作面超前支承压力影响范围为距离70.3-85.1 m,支承压力急剧增加位置距煤壁30 m;通过理论计算和数值模拟得到,当工作面斜长360m时得到工作面推进50 m、100 m、150 m、200 m、300 m、360 m时,应力集中系数分别为2.24、2.74、2.91、2.96、2.99、3.88。(3)相似材料模拟试验揭示了3下7123超长工作面开采顶板离层发育特征和覆岩结构运动特征。随着关键层的周期性破断,周期性产生震动,发生周期性冲击。(4)工作面越短,周期来压步距受工作面推采进度影响越大,并且周期来压步距不均衡性更加突出,工作面越长,周期来压步距受工作面推采进度影响越小,来压步距更加稳定,同时随着工作面长度的增加,周期来压顶板破断线与工作面平行度越高。超长工作面采场覆岩关键层破碎块度比普通工作面的要小。因此,超长综放面来压强度小,且压力分布均匀,而且会出现覆岩主关键层来压现象,必须加强预测预报和有效控制。论文包含图38幅,表格9个,参考文献122篇。
周小龙[9](2020)在《高阶段两步回采采场地压动态演化规律及其结构优化研究》文中进行了进一步梳理李楼-吴集铁矿生产能力为750万t/a,是国内大型的地下金属矿山之一,大结构采场、高效率无轨开采成为支撑矿山规模化开采的基本手段。李楼-吴集矿山采用两步骤嗣后充填采矿法,阶段高度100 m,矿房和矿柱宽度均为20 m,侧向暴露面积达到4000 m2~6000 m2。随着李楼-吴集铁矿在-400 m阶段大规模开采过程中,沿脉巷顶板冒落、围岩片帮、支护脱落等地压灾害严重制约矿山安全高效开采。因此,本文以矿山-400 m阶段采场为工程背景,通过原位地应力测量、采场围岩地压监测、充填体内部应力监测、FLAC 3D数值模拟等多种方法综合研究高阶段两步回采地压活动规律,重点解决矿山大结构采场的稳定性和结构参数优化等技术问题。主要研究内容如下:(1)采用前端数字化空心包体应变计对李楼-吴集矿区-300m分段、-350 m分段和-400 m分段水平的12个测点进行现场地应力实测,获得了矿区地应力场的空间分布规律,同时利用多元回归拟合方法,对矿区进行了地应力场拟合反演,建立了地应力场回归模型,并结合矿区地质构造,确定矿区属于逆断型转呈平移型应力状态。(2)结合李楼矿区-400m阶段的地压调查,确定了高阶段大结构采场的地压监测位置。通过对一步骤12-1#和二步骤10-4#矿柱采场四个分段水平采场围岩地压监测,揭示了采场围岩地压在同一水平有逐渐上升阶段、承压稳定阶段、卸压阶段三个阶段,在空间上两步骤采场围岩呈现相反的“分层阶梯式”传递规律:一步骤采场“自上而下”、二步骤采场“自下而上”。基于自主研发的在线应力监测装置,对26-1#采场4个不同分段胶结充填体中的三向应力进行全时段监测,揭示了胶结充填体的三向应力时空演化规律。(3)揭示了两步骤采场回采过程中地压活动规律随采矿作业工序的关系:一步骤矿房回采,采区应力场第一次重分布,主要由矿柱承力;二步骤矿柱一次回采,采区应力场第二次应力重分布,预留矿石矿柱、上下盘围岩为采区主要承力对象,胶结充填体承力不高,但胶结充填体起到了为采场围岩提供侧限压力、提高围岩自承能力的作用;二步骤矿柱二次回采过程中,采区应力场第三次应力重分布,上下盘围岩和南北端围岩为采区主要承力对象,弱胶结充填体和胶结充填体承力不高,但弱胶结充填体联系了两个胶结充填体采场,使得胶结充填体两向受力变为三向受力,改善了胶结充填体受力状态,使整个使得整个二步骤回采较为安全稳定。(4)通过Mathews稳定图法确定了高阶段大结构采场的合理暴露面积,结合FLAC 3D数值模拟,对大结构采场的回采顺序和结构参数进行了优化,确定了在保持原“隔一采一”采矿方法,在矿房和矿柱长度50 m、高度100 m不变的情况下,宽度均改为22 m。
赵聪聪[10](2019)在《会泽铅锌矿深部开采矿震震源时空分布特性研究》文中研究说明岩石力学特性的变化与地应力的无规律性始终伴随深井矿山开采。要解决深井开采中的此类问题,关键在于对地压等的监测与预警、管理与控制。本文以云南会泽铅锌矿地压监测与预警技术改造项目和大水井铅锌磷矿原岩应力测试项目为工程背景,主要研究内容为:1、在实验室内利用声发射定位技术,研究岩石试件在单轴压缩加载破坏过程微破裂源时空分布特性及其破坏演化特征;2、在矿山构建微震监测系统,利用微震监测技术对微震监测数据信息进行分析,研究矿山地压活动规律;3、基于分形理论,在研究声发射定位参数和微震监测定位参数的基础上,分析总结出深井矿山地压活动演化机理以及在监测预警系统基础上岩体破裂的时空分布特征,掌握对地压活动等大尺度岩体破坏的管理方法与控制手段;4、基于MATLAB软件,对监测系统所获得的参数信息进行数值模拟分析,反演矿山范围内能量场的数学物理分布,探讨矿山范围内能量场耗散集聚区域分布特征,并与本文监测预警系统监测结果的时空分布特征进行比对分析,综合验证深井开采地压活动变化规律。主要结论如下:在分析研究了矿山工程基础资料基础之上,建立了微震监测系统并对传感器阵列布置进行了优化,为矿山灾害监测预警提供了有效的技术手段;在开展室内岩石声发射试验基础之上,揭示了岩石试样内部裂纹萌生、扩展等一系列变化过程及分维值的变化规律。研究了岩石破坏能量及反演过程,得出了能量释放过程与破坏区域以及破坏程度的密切相关性,证明了能量反演数据分析的有效性;利用MATLAB软件计算分析了矿山微震事件的分形维值,验证了岩体的破坏过程与分形维值降维的一致性,得出了微震监测事件的时空分布特征及与现场地压活动的相关性。
二、不同进路间距地压监测及模拟显现分析(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、不同进路间距地压监测及模拟显现分析(论文提纲范文)
(1)华亭煤矿采掘工作面冲击危险性评价及防治技术研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景 |
1.2 研究意义 |
1.3 国内外研究现状 |
1.3.1 国内外冲击地压产生机理研究现状 |
1.3.2 国内外冲击危险评价及防治研究现状 |
1.4 研究内容 |
1.5 技术路线图 |
2 采区概况与冲击地压发生原因分析 |
2.1 2501 采区及工作面概况 |
2.1.1 地质概况 |
2.1.2 开采方法 |
2.2 冲击地压影响因素 |
2.3 动静载叠加诱冲机理 |
2.3.1 静载荷分析 |
2.3.2 动载荷分析 |
2.3.3 冲击地压产生原因 |
2.4 本章小结 |
3 采掘工作面冲击危险综合评价 |
3.1 评价方法及流程 |
3.2 采掘工作面冲击危险综合评价与区域划分 |
3.2.1 250102-2 工作面回采期间冲击危险性评价与区域划分 |
3.2.2 250107-1 工作面掘进期间冲击危险性评价与区域划分 |
3.3 本章小结 |
4 工作面防冲优化设计 |
4.1 设计原则 |
4.2 防冲优化设计 |
4.2.1 开采顺序 |
4.2.2 区段煤柱留设 |
4.2.3 开切眼布置 |
4.2.4 停采线设计 |
4.2.5 推进速度 |
4.2.6 巷道支护 |
4.3 本章小结 |
5 冲击地压监测预警与防治 |
5.1 冲击地压监测预警技术 |
5.1.1 微震监测 |
5.1.2 声发射法 |
5.1.3 钻屑法 |
5.1.4 矿压监测法 |
5.1.5 工作面应力在线监测 |
5.2 采掘工作面预卸压措施 |
5.2.1 大直径钻孔卸压 |
5.2.2 卸压爆破 |
5.2.3 煤层注水卸压 |
5.2.4 工作面初采初放期间解危卸压 |
5.3 解危卸压及效果检验 |
5.3.1 解危卸压 |
5.3.2 效果检验 |
5.4 安全防护措施 |
5.4.1 警戒区域“双限”管理制度 |
5.4.2 加强支护管理制度 |
5.4.3 设备材料限位固定管理制度 |
5.4.4 加强个体防护管理制度 |
5.5 防治效果对比 |
5.6 本章小结 |
6 结论 |
致谢 |
参考文献 |
附录 |
(2)陕蒙深部矿区典型动力灾害发生机理及防治研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 绪论 |
2.1 课题来源、研究背景及意义 |
2.1.1 课题来源 |
2.1.2 研究背景 |
2.1.3 论文研究意义 |
2.2 国内外研究现状 |
2.2.1 冲击地压发生机理研究现状 |
2.2.2 冲击地压监测预警研究现状 |
2.2.3 冲击地压防治技术研究现状 |
2.2.4 矿震发生机理、预测及防治研究现状 |
2.3 主要存在及亟待解决的问题 |
2.4 课题研究内容及技术路线 |
2.4.1 主要研究内容 |
2.4.2 研究方法 |
2.4.3 技术路线 |
3 陕蒙深部矿区动力灾害特征及其分类 |
3.1 陕蒙深部矿区典型地质开采条件特征 |
3.1.1 陕蒙深部矿区地层条件 |
3.1.2 陕蒙深部矿区煤岩体冲击倾向性 |
3.1.3 陕蒙深部矿区现阶段开采设计概况 |
3.2 陕蒙深部矿区典型开采条件下动力灾害特征 |
3.3 陕蒙深部矿区覆岩结构演化特征与力源类型 |
3.3.1 首采工作面开采边界条件下覆岩结构演化特征与力源类型 |
3.3.2 沿空工作面开采边界条件下覆岩结构演化特征与力源类型 |
3.3.3 两侧采空边界条件下覆岩结构演化特征与力源类型 |
3.4 陕蒙深部矿区动力灾害分类 |
3.5 本章小结 |
4 陕蒙深部矿井采动疏水应力叠加诱冲机理及其防治 |
4.1 采动疏水应力叠加诱冲案例分析 |
4.2 采动疏水应力叠加冲击地压力学模型 |
4.2.1 疏水对工作面支承压力的影响 |
4.2.2 推采速度对支承压力的影响 |
4.2.3 采动疏水应力叠加诱冲机制 |
4.3 疏水区开采冲击地压发生机制的相似材料模拟 |
4.3.1 相似材料模拟模型 |
4.3.2 相似模拟揭示的疏水后应力演化规律 |
4.4 采动疏水应力叠加冲击地压发生机制的数值模拟 |
4.4.1 数值模拟揭示的疏水前后应力分布规律 |
4.4.2 不同推采速度过疏水影响区支承压力分析 |
4.5 疏水前后221_上06工作面冲击危险区划分 |
4.5.1 221_上06工作面富水区疏水概况 |
4.5.2 221_上06工作面④号富水区疏水前冲击危险区划分 |
4.5.3 221_上06工作面④号富水区疏水后冲击危险区划分 |
4.5.4 221_上06工作面④号富水区疏水前后冲击危险区对比分析 |
4.6 采动疏水应力叠加冲击地压防治 |
4.6.1 疏水增压区的防治措施 |
4.6.2 疏水影响区域推采速度的动态调控 |
4.7 本章小结 |
5 陕蒙深部矿井宽区段煤柱应力叠加诱冲机理及其防治 |
5.1 陕蒙深部矿井宽区段煤柱诱冲案例分析 |
5.2 区段煤柱所处应力环境分析 |
5.2.1 不同埋深条件下宽区段煤柱应力环境分析 |
5.2.2 不同宽度条件下区段煤柱应力环境分析 |
5.3 宽区段煤柱诱发冲击地压机理研究 |
5.3.1 区段煤柱破坏分区 |
5.3.2 不同区段煤柱弹性核区宽度数值分析 |
5.3.3 宽区段煤柱应力演化规律 |
5.3.4 宽区段煤柱诱发冲击地压机理 |
5.4 区段煤柱诱发冲击地压防治与现场应用 |
5.4.1 理论计算和现场监测结果 |
5.4.2 已留宽区段煤柱冲击地压防治对策 |
5.4.3 宽区段煤柱诱发冲击地压防治措施现场实施方案 |
5.4.4 下阶段基于防冲的窄煤柱宽度设计 |
5.5 本章小结 |
6 陕蒙深部矿井隔离煤柱区硬岩破断型矿震机理 |
6.1 隔离煤柱区硬岩破断型矿震案例 |
6.1.1 工程地质概况 |
6.1.2 工作面现场矿震发生情况 |
6.2 隔离煤柱区硬岩破断型矿震发生机理 |
6.2.1 关键层挠度弯曲变形分析 |
6.2.2 采动引起的隔离煤柱压缩量分析 |
6.2.3 煤柱压缩量与关键层挠曲变形量关系分析 |
6.3 基于“冲击-矿震”协同控制的隔离煤柱宽度设计 |
6.4 数值模拟和现场监测分析验证 |
6.4.1 理论计算验证 |
6.4.2 数值模拟分析验证 |
6.4.3 微震监测分析验证 |
6.5 本章小结 |
7 结论 |
7.1 主要结论 |
7.2 创新点 |
7.3 不足与展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(3)近距离煤层群开采强矿压显现机理及监测预警技术研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
1.1 选题背景与意义 |
1.2 强矿压显现理论研究现状 |
1.2.1 强矿压显现经典理论 |
1.2.2 动静载叠加诱冲理论 |
1.3 近距离煤层群强矿压显现研究现状 |
1.4 强矿压监测预警研究现状 |
1.4.1 强矿压单参量监测预警研究现状 |
1.4.2 强矿压多参量集成监测预警研究现状 |
1.5 存在的问题及不足 |
1.6 主要研究内容与研究方法 |
1.6.1 研究内容 |
1.6.2 研究方法与技术路线 |
2 近距离煤层群开采强矿压显现特征及影响因素研究 |
2.1 近距离煤层群地质及开采技术条件 |
2.2 近距离煤层群开采强矿压显现特征 |
2.3 近距离煤层群强矿压显现影响因素 |
2.4 本章小结 |
3 近距离煤层群开采强矿压显现机理研究 |
3.1 近距离煤层群开采多源静载计算模型 |
3.1.1 自重应力计算 |
3.1.2 上覆煤层应力集中与传递估算 |
3.1.3 采空区覆岩侧向支承压力计算 |
3.1.4 超前支承压力计算 |
3.1.5 多源静载作用机理与实例验证 |
3.2 近距离煤层群开采动载力源分布规律研究 |
3.2.1 下煤层开采诱发远场动载理论判据 |
3.2.2 典型工作面微震时空演化规律分析 |
3.3 近距离煤层群动静载叠加诱发矿压显现判别准则与工程应用 |
3.3.1 动静载叠加诱发强矿压显现判别准则 |
3.3.2 动静载叠加诱发强矿压显现判别准则应用实例 |
3.4 本章小结 |
4 近距离煤层群开采强矿压显现数值模拟 |
4.1 上覆遗留煤柱下工作面开采应力场模拟 |
4.1.1 数值模型构建与模拟方案 |
4.1.2 应力场模拟结果分析 |
4.1.3 数值模拟与理论计算结果对比验证 |
4.2 近距离煤层群动静载叠加作用规律研究 |
4.2.1 数值模拟模型与模拟方案 |
4.2.2 动载力源选择 |
4.2.3 震源处动载力源计算与校正 |
4.2.4 震动波衰减及动静载作用模拟结果分析 |
4.3 本章小结 |
5 近距离煤层群强矿压显现区域-局部集成预警方法 |
5.1 近距离煤层群强矿压显现区域-局部集成预警原理 |
5.2 区域动载预警指标体系与预警模型 |
5.2.1 区域微震预警指标前兆规律分析 |
5.2.2 区域微震预警指标 |
5.2.3 区域震动波CT探测 |
5.2.4 区域微震监测预警模型 |
5.2.5 区域微震预警步骤 |
5.3 局部静载预警指标体系与预警模型 |
5.3.1 电磁辐射监测预警指标 |
5.3.2 矿山压力监测预警指标 |
5.3.3 局部静载监测预警模型 |
5.3.4 局部静载预警步骤 |
5.4 近距离煤层群开采强矿压显现区域-局部集成预警模型 |
5.5 本章小结 |
6 工程应用与验证 |
6.1 工程背景 |
6.2 区域震动波CT和局部电磁辐射监测效果分析 |
6.2.1 区域震动波CT反演结果分析 |
6.2.2 局部电磁辐射监测结果分析 |
6.3 预警结果与验证 |
6.3.1 区域动载监测预警结果 |
6.3.2 局部静载监测预警结果 |
6.3.3 区域-局部集成监测预警结果 |
6.4 近距离煤层群开采强矿压显现防治建议 |
6.5 本章小结 |
7 结论与展望 |
7.1 全文总结 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简历及在学研究成果 |
(4)双采矿方法协同开采条件下采场稳定性监测与分析(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 选题背景及意义 |
1.2 国内外研究现状 |
1.2.1 采场稳定性研究现状 |
1.2.2 地压监测应用研究现状 |
1.2.3 采场稳定性数值模拟分析研究现状 |
1.3 研究目标、内容及技术路线 |
1.3.1 研究目标 |
1.3.2 研究内容 |
1.3.3 研究技术路线 |
2 矿山工程地质及协同开采条件概况 |
2.1 采区工程地质 |
2.1.1 矿体特征 |
2.1.2 工程地质特征 |
2.2 矿岩及胶结充填体物理力学性质 |
2.3 崩落法和充填法协同生产时采场布置空间关系 |
2.4 采场结构参数 |
2.4.1 崩落法采场结构参数 |
2.4.2 充填法采场结构参数 |
2.5 协同开采中影响采场稳定性的主要因素 |
2.6 本章小结 |
3 采场稳定性模拟计算分析 |
3.1 模型的建立 |
3.1.1 几何模型 |
3.1.2 边界条件及基本假设 |
3.1.3 模拟力学参数 |
3.1.4 初始应力平衡 |
3.2 崩落法采场回采进路稳定性分析 |
3.2.1 首采分段(1595m)回采进路稳定性分析 |
3.2.2 第二分段(1580m)回采进路稳定性分析 |
3.3 下部胶结充填体稳定性分析 |
3.4 下部充填法采场非连续采空区稳定性分析 |
3.4.1 充填法采场间柱强度确定 |
3.4.2 充填法采场间柱稳定性分析 |
3.5 本章小结 |
4 采场地压监测及稳定性分析 |
4.1 微地震监测及分析 |
4.1.1 微地震监测定位原理 |
4.1.2 微地震监测系统构建 |
4.1.3 微地震干扰波分类及识别 |
4.1.4 微地震强度识别 |
4.1.5 定位精度分析 |
4.1.6 微地震监测结果及分析 |
4.2 崩落法采场回采进路围岩位移监测及分析 |
4.2.1 进路围岩稳定性监测目的及意义 |
4.2.2 位移监测设备 |
4.2.3 回采进路围岩位移监测方案 |
4.2.4 监测结果及分析 |
4.3 本章小节 |
5 爆破振动对胶结充填体顶板稳定性影响分析 |
5.1 爆破振动对矿岩体破坏原理 |
5.2 爆破振动破坏判据 |
5.2.1 动态应力比 |
5.2.2 胶结充填体动态应力比破坏判据 |
5.3 充填法采场浅孔爆破振动监测 |
5.3.1 监测设备简介 |
5.3.2 监测点布置及设备安装 |
5.3.3 浅孔爆破振动监测数据 |
5.4 崩落法采场中深孔爆破振动监测 |
5.4.1 监测点布置 |
5.4.2 中深爆破参数 |
5.4.3 中深孔爆破振动监测数据 |
5.5 中深孔爆破对下部胶结充填体顶板稳定性影响分析 |
5.6 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
攻读学位期间取得的研究成果 |
(5)深井条带充填开采冲击地压发生机理与防治研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 绪论 |
2.1 课题来源、研究背景及意义 |
2.1.1 课题来源 |
2.1.2 研究背景 |
2.1.3 课题意义 |
2.2 国内外研究现状 |
2.2.1 冲击地压发生机理研究现状 |
2.2.2 冲击危险性评价方法研究现状 |
2.2.3 冲击地压监测预警技术研究现状 |
2.2.4 冲击地压治理技术研究现状 |
2.2.5 充填开采与冲击地压的关系研究现状 |
2.2.6 亟待进一步解决的问题 |
2.3 课题研究内容及技术路线 |
2.3.1 主要研究内容 |
2.3.2 研究方法 |
2.3.3 技术路线 |
3 深井条带充填开采覆岩结构演化特征与支承压力分布规律研究 |
3.1 工程背景分析 |
3.2 深井条带充填开采覆岩空间结构及演化规律分析 |
3.2.1 典型开采边界条件下条带充填工作面类型划分 |
3.2.2 采空区充实率对覆岩结构特征的影响 |
3.2.3 深井充填工作面覆岩结构演化的时空滞后性 |
3.2.4 深井充填工作面覆岩结构演变的边界效应 |
3.3 深井充填工作面走向支承压力分布及演化规律 |
3.3.1 深井充填工作面载荷三带结构基本模型 |
3.3.2 深井充填工作面静应力估算方法 |
3.3.3 深井充填工作面静应力增量估算方法 |
3.4 采空区充填效果对关键层完整性的影响 |
3.5 深井条带充填工作面载荷三带结构演化规律 |
3.6 实体条带充填开采载荷三带模型的可靠性验证 |
3.6.1 实体条带充填开采工作面超前支承压力计算 |
3.6.2 实体条带充填开采工作面煤体应力监测分析 |
3.6.3 实体条带充填开采工作面支架工作阻力分析 |
3.6.4 实体条带充填开采工作面微震事件空间分布特征 |
3.7 本章小结 |
4 深井条带充填开采冲击地压发生机理研究 |
4.1 深井条带充填开采覆岩运动规律的相似材料模拟试验 |
4.1.1 相似材料模拟试验方案 |
4.1.2 不同等价采高条件下条带充填开采覆岩破坏规律 |
4.1.3 不同等价采高条件下条带充填开采覆岩位移场特征 |
4.2 深井条带充填开采覆岩运动和应力分布特征的数值模拟研究 |
4.2.1 数值模拟方案 |
4.2.2 等价采高对条带充填工作面支承压力影响的数值模拟分析 |
4.3 深井条带充填开采期间覆岩空间结构演化特征 |
4.4 基于动静应力叠加的非充分采动采空区覆岩联动致冲机理 |
4.5 本章小结 |
5 深井条带充填开采工作面冲击危险性评估方法研究 |
5.1 深井条带工作面充填防冲有效性评估方法 |
5.2 深井条带充填开采工作面冲击危险性评估方法 |
5.2.1 煤体应力状态对局部冲击危险隶属度分析 |
5.2.2 条带煤柱应力状态对整体冲击危险隶属度分析 |
5.2.3 煤层弹性能量指数对冲击危险性的隶属度 |
5.2.4 条带煤柱充填工作面冲击危险评价方法 |
5.3 深井条带煤柱充填工作面冲击危险性评估实例 |
5.3.1 深井条带煤柱充填工作面整体冲击可能性验算 |
5.3.2 深井条带煤柱充填工作面局部冲击可能性验算 |
5.4 本章小结 |
6 深井条带充填开采冲击地压防治技术体系研究 |
6.1 基于防冲的条带煤柱的可采性研究 |
6.2 基于防冲的深井条带充填工作面区段煤柱设计 |
6.2.1 避免巷道局部冲击的区段煤柱最大宽度 |
6.2.2 避免发生工作面整体冲击的最大区段煤柱宽度 |
6.2.3 保障采空区充填体稳定的区段煤柱宽度 |
6.3 基于防冲的深井条带充填开采工作面的充实率控制 |
6.4 深井条带充填开采工作面的防冲措施 |
6.4.1 基于降低弹性能量指数的煤层大直径钻孔参数设计 |
6.4.2 两顺槽走向爆破断顶方案 |
6.4.3 合理推采速度的确定 |
6.4.4 地震波CT反演监测方案 |
6.4.5 加强巷道超前支护 |
6.5 本章小结 |
7 结论 |
7.1 主要结论 |
7.2 创新点 |
7.3 不足与展望 |
参考文献 |
作者简历及在学研究 |
学位论文数据集 |
(6)自然崩落法矿山底部结构失稳机理及防治措施研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
1.1 选题背景及意义 |
1.2 国内外文献综述 |
1.2.1 自然崩落采矿法应用现状 |
1.2.2 自然崩落法底部结构失稳机理研究现状 |
1.2.3 地压控制措施研究现状 |
1.2.4 存在的主要问题 |
1.3 论文主要研究内容、方法及技术路线 |
1.3.1 研究内容和方法 |
1.3.2 技术路线 |
1.4 本章小结 |
2 矿区工程背景及底部结构失稳发生规律研究 |
2.1 引言 |
2.2 铜矿峪矿工程背景 |
2.2.1 矿区地层 |
2.2.2 地质构造 |
2.2.3 矿体特征 |
2.2.4 采矿方法 |
2.3 矿区地应力场测试 |
2.4 岩体力学参数确定 |
2.4.1 岩石力学特性室内试验研究 |
2.4.2 基于Hoek-Brown准则的岩体力学参数计算 |
2.5 铜矿峪矿底部结构失稳发生规律研究 |
2.5.1 铜矿峪矿底部结构失稳特征 |
2.5.2 铜矿峪矿底部结构失稳发生规律 |
2.6 本章小结 |
3 自然崩落法底部结构全生命周期地压演化特征与失稳机理 |
3.1 引言 |
3.2 底部结构全生命周期受力过程力学解析 |
3.2.1 基于压力拱理论的拉底推进线前方底部结构受力解析 |
3.2.2 基于薄板理论的拉底空间下方底部结构等效模型受力解析 |
3.2.3 基于散体平衡拱理论的采场矿石对底部结构作用力解析 |
3.2.4 小结 |
3.3 底部结构全生命周期数值模型构建 |
3.3.1 模型的构建方法 |
3.3.2 模型结构参数 |
3.3.3 强度准则 |
3.3.4 边界条件与地应力施加 |
3.3.5 底部结构全生命周期数值模拟步骤 |
3.4 底部结构全生命周期力学效应 |
3.4.1 底部结构全生命周期应力演化特征 |
3.4.2 底部结构全生命周期位移演化特征 |
3.5 底部结构全生命周期失稳机理分析 |
3.5.1 拉底推进线前方底部结构失稳机理 |
3.5.2 拉底空间下方底部结构失稳机理 |
3.5.3 底部结构全生命周期反复失稳机理 |
3.6 本章小结 |
4 自然崩落法主副层联合开采底部结构失稳机理 |
4.1 引言 |
4.2 主副层联合开采数值模型构建 |
4.2.1 模型结构参数 |
4.2.2 主副层联合开采数值模拟步骤 |
4.3 主层开采扰动下副层底部结构力学效应 |
4.3.1 主层开采扰动下副层底部结构应力演化特征 |
4.3.2 主层开采扰动下副层底部结构位移演化特征 |
4.4 主副层联合开采底部结构失稳机理 |
4.4.1 副层拉底推进线前方底部结构地压显现加剧机理 |
4.4.2 副层拉底空间下方底部结构地压演化机理 |
4.5 本章小结 |
5 自然崩落法拉底不良诱发底部结构失稳机理 |
5.1 引言 |
5.2 拉底不良采场数值模型构建 |
5.2.1 模型结构参数 |
5.2.2 数值模拟步骤 |
5.3 残留矿柱扰动下底部结构力学效应 |
5.3.1 残留矿柱扰动下底部结构应力演化特征 |
5.3.2 残留矿柱扰动下底部结构位移演化特征 |
5.4 拉底不良诱发底部结构失稳机理 |
5.4.1 残留矿柱下方桃型矿柱失稳机理 |
5.4.2 残留矿柱下方出矿水平失稳机理 |
5.4.3 残留矿柱下方底部结构整体失稳机理 |
5.5 本章小结 |
6 自然崩落法底部结构失稳防治措施研究 |
6.1 引言 |
6.2 基于微震监测系统的底部结构失稳防治技术研究 |
6.2.1 微震监测系统工作原理 |
6.2.2 铜矿峪矿微震监测系统作用 |
6.2.3 铜矿峪矿微震监测区域与传感器的布设 |
6.2.4 铜矿峪矿微震传感器网络定位精度检验 |
6.2.5 铜矿峪矿微震监测系统方案的确定 |
6.3 底部结构支护与加固措施研究 |
6.3.1 支护与加固措施的提出 |
6.3.2 支护与加固效果数值分析 |
6.3.3 支护与加固现场应用效果检验 |
6.4 主副层联合开采底部结构失稳防治措施研究 |
6.4.1 主副层联合开采底部结构失稳防治措施提出 |
6.4.2 副层预拉底方式底部结构稳定性分析 |
6.5 拉底不良诱发底部结构失稳防治措施研究 |
6.6 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(7)近直立煤层群综放开采冲击地压机理及预警技术研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
1.1 论文研究来源 |
1.2 研究背景与意义 |
1.3 国内外研究现状 |
1.3.1 冲击地压理论研究现状 |
1.3.2 动载诱冲机制研究现状 |
1.3.3 大倾角煤层冲击地压机理研究现状 |
1.3.4 冲击地压监测预警研究现状 |
1.4 需进一步研究的问题 |
1.5 主要研究内容及方法 |
1.5.1 研究内容 |
1.5.2 研究方法及技术路线 |
2 近直立煤层群冲击地压显现特征及诱冲因素研究 |
2.1 近直立煤层群地质及开采技术条件 |
2.2 近直立煤层群冲击地压显现特征 |
2.2.1 典型冲击地压事件 |
2.2.2 近直立煤层群冲击地压破坏特征 |
2.3 近直立煤层群冲击地压诱冲因素分析 |
2.3.1 冲击前后微震活动特征 |
2.3.2 冲击前后应力场演变特征 |
2.3.3 地表及围岩破坏特征 |
2.3.4 冲击地压诱冲因素总结 |
2.4 本章小结 |
3 近直立煤层群开采静载应力分布规律研究 |
3.1 模型构建与模拟方案 |
3.1.1 数值模型 |
3.1.2 模拟研究方案 |
3.2 覆岩运移及煤岩应力场演化规律 |
3.2.1 近直立煤层群围岩应力场分布特征 |
3.2.2 近直立煤层群覆岩运移规律 |
3.2.3 工作面开采过程中采动应力分布特征 |
3.3 采空区充填材料力学性质对覆岩运移及应力场分布影响 |
3.3.1 应力场随充填材料力学性质的变化特征 |
3.3.2 覆岩运移随充填材料力学性质的变化规律 |
3.3.3 采空区不同充填材料力学性质下煤岩体塑性破坏特征 |
3.4 侧压力系数对覆岩运移及应力场分布影响 |
3.4.1 应力场随侧压力系数的变化特征 |
3.4.2 覆岩运移随侧压力系数的变化规律 |
3.5 煤层倾角对覆岩运移及应力场分布影响 |
3.5.1 应力场随煤层倾角变化 |
3.5.2 失稳破坏强度随煤层倾角变化 |
3.5.3 煤体运移规律随煤层倾角变化 |
3.6 本章小结 |
4 近直立煤层群动载诱冲作用规律研究 |
4.1 煤岩体破裂震动位移场 |
4.2 动载源处理及震动波形拆分 |
4.2.1 震动波辐射模式设定 |
4.2.2 诱发近直立煤层群冲击地压的典型震动波计算和校准 |
4.2.3 基于同步压缩变换的震动波形拆分 |
4.3 动载模拟方案和损伤评估方法 |
4.3.1 冲击地压背景和破坏特征 |
4.3.2 动载计算模型构建和赋值 |
4.3.3 模型边界条件设置 |
4.3.4 震动波加载方法 |
4.3.5 冲击地压损伤评估方法 |
4.4 近直立煤层群动载诱冲数值模拟结果 |
4.4.1 震动波在煤岩介质中的传播特征 |
4.4.2 震动波引起的围岩动态响应 |
4.4.3 近直立煤层群巷道围岩的损伤特征 |
4.4.4 动载作用下巷道围岩损伤评估 |
4.5 本章小结 |
5 近直立煤层群综放充填开采压撬型冲击地压机理研究 |
5.1 近直立煤层群综放充填开采走向岩梁受力分析 |
5.1.1 煤层群采空区走向充填布置 |
5.1.2 充填条件下基本顶超静定梁分析 |
5.1.3 充填条件下层间岩柱超静定梁分析 |
5.2 “近直立悬顶结构”倾向模型构建及力学分析 |
5.2.1 悬顶结构力学模型构建及受力分析 |
5.2.2 悬顶结构能量分布及影响因素分析 |
5.2.3 悬顶破裂诱冲能力分析 |
5.3 “近直立岩柱结构”倾向模型构建及力学分析 |
5.3.1 悬空岩柱力学模型构建及受力分析 |
5.3.2 悬空岩柱能量分布及影响因素分析 |
5.4 覆岩结构弹性能释放诱发动载扰动分析 |
5.5 近直立煤层群开采冲击地压机理分析 |
5.5.1 悬顶挤压效应和破裂诱发冲击地压 |
5.5.2 岩柱撬转破裂诱冲机理 |
5.5.3 压撬效应耦合冲击地压机理 |
5.6 本章小结 |
6 近直立煤层群冲击地压多指标集成预警方法及工程验证 |
6.1 近直立煤层群综放充填开采冲击危险多指标集成预警原理 |
6.2 冲击地压危险前兆信息响应特征及指标体系 |
6.2.1 监测系统布置 |
6.2.2 冲击危险预警指标时序前兆特征分析 |
6.2.3 冲击危险预警指标空间前兆特征分析 |
6.2.4 冲击危险预警指标体系 |
6.3 冲击地压危险多指标集成预警模型 |
6.3.1 集成预警技术架构 |
6.3.2 集成预警模型构建 |
6.4 多指标集成预警模型工程验证 |
6.5 本章小结 |
7 结论与展望 |
7.1 研究结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(8)田陈煤矿3下7123工作面覆岩结构运动规律及灾害控制研究(论文提纲范文)
致谢 |
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状及进展 |
1.3 主要研究内容与方法 |
1.4 研究技术路线 |
2 工程概况 |
2.1 工作面概况 |
2.2 工程地质条件 |
2.3 巷道支护技术方案 |
3 3_下7123超长工作面支承压力演化规律研究 |
3.1 3_下7123超长工作面支承压力演化规律数值模拟研究 |
3.2 3_下7123超长工作面支承压力演化特征实测研究 |
3.3 本章小结 |
4 3_下713超长工作面覆岩运动规律与灾害控制 |
4.1 3_下713超长工作面开采顶板覆岩破断运移规律 |
4.2 3_下713超长工作面开采微震特征研究 |
4.3 3_下713超长工作面开采灾害控制 |
4.4 本章小结 |
5 工程应用 |
5.1 工作面冲击危险性评价 |
5.2 冲击危险区综合防治措施 |
5.3 应用效果 |
6 主要结论 |
参考文献 |
作者简历 |
学位论文数据集 |
(9)高阶段两步回采采场地压动态演化规律及其结构优化研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 绪论 |
2.1 选题背景与意义 |
2.1.1 选题背景 |
2.1.2 研究意义 |
2.2 文献综述 |
2.2.1 地应力测量技术研究 |
2.2.2 地压监测技术研究 |
2.2.3 两步回采采场地压活动规律研究 |
2.2.4 高阶段采场结构参数优化研究 |
2.3 问题提出 |
2.4 研究内容与技术路线 |
2.4.1 研究内容 |
2.4.2 技术路线 |
3 矿区工程地质及巷道地压调查 |
3.1 自然地理条件 |
3.2 矿区及矿床地质特征 |
3.2.1 矿体特征及赋存条件 |
3.2.2 李楼矿区矿岩物理性质 |
3.2.3 水文地质条件 |
3.2.4 矿区地质构造概况 |
3.3 矿区地压调查 |
3.4 矿岩-充填体力学参数 |
3.5 本章小结 |
4 矿区地应力测量及应力场反演分析 |
4.1 数字化空心包体地应力测量技术 |
4.2 地应力测量结果分析 |
4.2.1 应力解除试验结果 |
4.2.2 温度标定试验结果 |
4.2.3 围压率定试验结果 |
4.2.4 地应力实测结果 |
4.3 矿区地应力场数值反演分析 |
4.3.1 三维地质模型的建立 |
4.3.2 地应力场回归影响因素分析 |
4.3.3 各方向单位构造应力场拟合 |
4.3.4 影响权重系数计算 |
4.3.5 拟合结果分析 |
4.4 矿区地应力场分布规律及与地质构造关系研究 |
4.4.1 实测地应力分布规律 |
4.4.2 矿区地应力场与地质构造关系研究 |
4.5 本章小结 |
5 高阶段两步骤采动地压全时程监测及规律研究 |
5.1 采动地压全时程监测仪器 |
5.1.1 岩体采动应力长期监测系统 |
5.1.2 自主设计充填体内部三向应力监测系统 |
5.2 两步骤采场采动地压监测步骤 |
5.2.1 采场围岩采动地压监测点选定 |
5.2.2 采场充填体内部三向应力监测点选定 |
5.3 采动地压全时程监测结果分析 |
5.3.1 两步骤采场围岩采动地压监测数据分析 |
5.3.2 采场充填体全时程三向应力监测数据分析 |
5.4 两步骤采场实测应力全时程动态演化规律 |
5.5 本章小结 |
6 高阶段两步骤回采数值模拟分析及结构参数优化 |
6.1 三维计算模型建立及参数选取 |
6.2 -400m阶段两步骤回采数值模拟分析 |
6.2.1 -400m阶段一步骤矿房回采数值模拟分析 |
6.2.2 -400m阶段二步骤矿柱回采数值模拟分析 |
6.3 高阶段两步骤采场地压活动规律及与实测对比分析 |
6.4 大结构采场回采顺序及采场结构参数优化 |
6.4.1 采场合理暴露面积研究 |
6.4.2 采场回采顺序优化设计 |
6.4.3 采场结构参数优化设计 |
6.5 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(10)会泽铅锌矿深部开采矿震震源时空分布特性研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景与现状 |
1.1.1 研究背景 |
1.1.2 微震监测研究现状 |
1.1.3 分形理论研究及其应用 |
1.2 研究内容与方法 |
1.2.1 研究内容 |
1.2.2 研究方法和技术路线 |
1.3 研究目的及意义 |
1.4 主要技术特征与内容 |
第二章 矿山现状与地压活动调查分析 |
2.1 矿山现状 |
2.1.1 概况 |
2.1.2 开采现状 |
2.2 矿山工程地质条件现场调查与分析 |
2.2.1 地质构造 |
2.2.2 主要断裂构造带的水文地质特征 |
2.2.3 矿山历史地压活动 |
2.2.4 宏观地压活动现状调查 |
2.2.5 矿区地压活动规律分析 |
2.3 与本研究课题的关联性 |
2.4 本章小结 |
第三章 岩石声发射实验及微破裂源演化规律研究 |
3.1 声发射实验简介 |
3.2 实验过程 |
3.2.1 现场取芯 |
3.2.2 岩样加工及其预处理 |
3.2.3 进行实验 |
3.2.4 实验数据初步处理 |
3.3 数据处理与分析 |
3.3.1 岩石试件破坏形态 |
3.3.2 能量释放数值分析 |
3.4 本章小结 |
第四章 基于矿山微震监测系统的矿震时空分布特征 |
4.1 深井开采矿震简介 |
4.1.1 矿震简介 |
4.1.2 矿震震源机理研究 |
4.2 震源定位与分形理论原理及关系 |
4.2.1 震源定位基础理论及方法 |
4.2.2 分形理论与分维计算方法 |
4.2.3 时间、空间分形参数的理论关系 |
4.3 微震监测系统的构建 |
4.3.1 矿山微震监测系统简介 |
4.3.2 台网设计 |
4.3.3 硬件安装与定位精度调试 |
4.3.4 预期效果 |
4.4 震源定位时空分布与分形特征 |
4.4.1 震源定位时空分布分形规律研究方法 |
4.4.2 震源定位时空分布分维值具体计算步骤 |
4.4.3 实例简析 |
4.4.4 分形简析 |
4.5 本章小结 |
第五章 基于MATLAB和分形理论对震源参数进行分析 |
5.1 分形理论研究基础 |
5.2 岩体破坏的数据化显现特征 |
5.2.1 监测数据的筛选 |
5.2.2 能量耗散参数分析 |
5.2.3 震源时空参数反演 |
5.3 分形统计与分析 |
5.3.1 分形统计方法及准备过程 |
5.3.2 分形计算 |
5.3.3 工况现场简析 |
5.4 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
科研项目与获得成果 |
致谢 |
四、不同进路间距地压监测及模拟显现分析(论文参考文献)
- [1]华亭煤矿采掘工作面冲击危险性评价及防治技术研究[D]. 刘斌. 西安科技大学, 2021(02)
- [2]陕蒙深部矿区典型动力灾害发生机理及防治研究[D]. 王博. 北京科技大学, 2021
- [3]近距离煤层群开采强矿压显现机理及监测预警技术研究[D]. 牟宏伟. 北京科技大学, 2021(08)
- [4]双采矿方法协同开采条件下采场稳定性监测与分析[D]. 雷国荣. 西南科技大学, 2021(08)
- [5]深井条带充填开采冲击地压发生机理与防治研究[D]. 陈洋. 北京科技大学, 2021
- [6]自然崩落法矿山底部结构失稳机理及防治措施研究[D]. 夏志远. 北京科技大学, 2021(02)
- [7]近直立煤层群综放开采冲击地压机理及预警技术研究[D]. 何生全. 北京科技大学, 2021
- [8]田陈煤矿3下7123工作面覆岩结构运动规律及灾害控制研究[D]. 魏忠奎. 中国矿业大学, 2020(03)
- [9]高阶段两步回采采场地压动态演化规律及其结构优化研究[D]. 周小龙. 北京科技大学, 2020(06)
- [10]会泽铅锌矿深部开采矿震震源时空分布特性研究[D]. 赵聪聪. 长沙矿山研究院, 2019