问:关于初一全等三角形的数学论文!
- 答:现已知BC=EF,AF=DC,AB=DE,请证明∠EFD=∠BCA(在同一平面内) 证明: 因为AF= DC ( 已知)
所以AF+ FC=DC+ FC
所以 DF= AC
在 △DEF和△ABC
因为 AC=DF (已证)
因为 AB=DE (已知)
有因为 DC=EF (已知)
所以△ABC≌△DEF (SSS)
因为∠EFD=∠BCA ( 全等三角形的对应角相等)
这是比较基础的一道几何证明题。。
以上证明是用“边边边”来证明的,这是全等三角形证明的最简单的方法。 - 答:还有一个方法,对于直角三角形,可用HL,即一条直角边和斜边对应相等的三角形是全等三角形。
问:初中数学论文 论全等三角形 急~
- 答:经过分析,三角形全等条件如下
“SAS”也叫“边角边”,
意思是两个三角形中,有两条边和他们的夹角对应相等时,这两个三角形全等;
“SSS”也叫“边边边”,
意思是两个三角形中,有三条边对应相等时,这两个三角形全等;
“ASA”也叫“角边角”,
意思是两个三角形中,有两个角和他们的夹边对应相等时,这两个三角形全等;
“AAS”也叫“角角边”,
意思是两个三角形中,有两个角和其中一个角的对边对应相等时,这两个三角形全等; - 答:1三边全相等
2两边和一夹角分别相等
3三角分别相等和一对相等
问:全等三角形的小论文
- 答:点“点击在新窗口中打开图片” 可以下栽
问:初一关于全等三角形的小论文,暑假作业,怎么写啊
- 答:三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5 )“斜边直角边”简称“HL”(直角三角形)
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
问:关于全等三角形的论文应该怎么写啊?
- 答:1.引入:人物外貌描写+点明题旨
2.叙事:从不同的角度选取
3.揭题:详写最能体现人物思想内涵的一件事。
4.点化:紧扣题旨或议论或抒情。
此篇中,我们已经把写人论文的基本结构架下来了,在下篇中,我们将谈到怎样写人,才可以使文章显得生动。