一、无理数的发现及其启示(论文文献综述)
梁佳田[1](2021)在《初三学生数感现状调查研究 ——以兰州市三所初中为例》文中指出
孙丹丹[2](2021)在《基于数学史网络研修的在职初中数学教师观念发展研究》文中指出该研究是一项在数学教育中运用数学史的实证研究,关注数学史研修对在职初中教师数学观及数学教学观的影响。为此,研究者设计实施了一项旨在发展在职初中数学教师观念的基于数学史的网络研修项目,共持续一年,包含九个主题的数学史学习及教学研讨,研究致力于分析:参与研修项目的教师的数学观和数学教学观是否有转变?如果有:(1a)教师数学观内容有何转变?(1b)教师数学观持有方式有何转变?(2a)教师数学教学观内容有何转变?(2b)教师数学教学观持有方式有何转变?(3)教师的数学观和数学教学观转变有何联系?这些转变与数学史有怎样的联系?研究收集了教师数学观及数学教学观前后测李克特问卷、数学观及数学教学观前后测开放性问卷、9个研修主题的反思单及若干教师的反思单追踪访谈、个案教师教学设计、个案教师半结构化访谈等数据,综合教师总体与教师个案两个层面来分析问题1教师数学观的变化及问题2教师数学教学观的变化,总体层面的分析可以发现教师观念转变趋势,个体层面的分析有助于深入转变细节,问题3数学史、数学观及数学教学观转变关系的探索依赖于具体情境,因此仅在个案层面回答。研究采用混合研究法分析教师总体观念转变,采用案例研究法分析教师个体观念转变。研究发现,教师数学观表现出更支持柏拉图主义和问题解决观、更否定工具主义观的趋势,教师数学教学观表现出更支持强调理解及学生中心、更否定强调表现的趋势。具体而言,教师数学观内容的转变体现在:持有更加动态的数学观;倾向认为数学思维的应用也是一种数学应用;否定数学是不相关的事实规则集合。教师数学观持有方式转变体现在阐释性、例证性、论证性、一致性的增强。教师数学教学观内容转变体现在:深化“双基”目标;重视情意及观念目标的培养;尊重及重视学生的想法;关注学生的主动参与及思考;补充调整教科书。教师数学教学观持有方式转变体现在:例示性、论证性、执行性及联结性增强,冲突性减弱。研究从数学史(横向枚举史、纵向演进史)和HPM课例实施及观摩两方面阐述了数学史网络研修对数学教师观念的影响路径。本研究理论创新在于综合信念内容及信念持有方式两个视角来探索数学史对数学教师观念系统的影响,关注了已有数学史与数学教育研究较少关注的数学教学信念,同时讨论了数学观与数学教学观之间的联系。实践创新在于设计了可推广的指向在职初中数学教师观念发展的教师教育项目,借助网络研修拓广了以数学史促进教师专业发展的辐射面,为开展“互联网+教师教育”提供参考原型。
沈中宇[3](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中研究表明百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。
范强华[4](2021)在《基于数学核心素养的初中生逻辑推理能力培养的实践研究》文中研究表明逻辑推理能力一直是数学教育研究的一个重要领域,初中生逻辑推理能力培养的研究对于学科核心素养在义务教育阶段的落实具有理论价值和实践意义。目前国家层面已推出了普通高中阶段数学核心素养的具体内容,而义务教育阶段数学核心素养、大学生数学核心素养、公民数学核心素养等理论体系的构建还是空白,学生不可能到高中才培养数学核心素养,也不可能高中之后就不需要考虑数学核心素养了。现今已经有一部分学者开始关注小学阶段数学核心素养,但对于初中阶段关注还是太少,仍处于理论与实践研究的初始阶段。这些客观情况无疑给一线数学教师教学带来了极大困惑。本文通过实践研究,借助调查问卷分析初中生数学逻辑推理能力现状及影响因素;通过教学实践探索初中生数学逻辑推理能力培养的方法,尝试构建初中生数学逻辑推理能力培养框架,总结实践案例,使初中阶段数学逻辑推理能力培养具体化、体系化、可操作化。研究以皮亚杰认知发展理论和建构主义理论为理论基础,梳理国内外文献中关于数学素养、核心素养、数学核心素养、数学逻辑推理能力研究的现有结论,编制关于初中生数学逻辑推理能力培养现状的教师问卷与学生问卷、测试题,使用SPSS20和Excel2003等软件对调查问卷和测试数据进行分析,梳理初中生数学逻辑推理能力现状、影响因素。据此,提出初中生数学逻辑推理能力培养策略,并设立对照实验来检测培养策略的有效性,从而完善培养策略,推广研究成果。研究结论为初中生数学逻辑推理能力水平在三年中发展较快、提升较大,整体处于中等水平,但具有阶段性与不均衡性。其中选言推理、命题演算与假言推理变化较大,合情推理七、八年级变化较大,八、九年级变化不明显,特别命题演算变化越来越大。从性别角度分析,初中男、女生在简单推理、选言推理与命题演算上具有显着性差异,男、女生数学逻辑推理能力培养影响因素总分均值不存在显着性差异,数学逻辑推理能力培养影响因素各亚维度得分均值及方差差异均不明显;同届初中生逻辑推理能力的影响因素主要有数学知识体系、数学学习策略、数学教学策略、数学自信、师生交流。本研究提出了初中生数学逻辑推理能力培养的教学策略:学生先学,自主构建数学知识体系;新知探究,注重数学知识形成探究,积累逻辑推理经验,优化数学认知结构;变式应用,引导学生深度学习,培养数学高阶思维;练习展示与复习巩固,创造展示机会,培养数学语言表达能力,激发数学学习兴趣。
宋佳[5](2021)在《中国大陆与中国香港高中数学教科书比较研究》文中指出数学教科书是国家教育发展质量与水平的直观反映,是教授课程、传播知识、承载教学理念的重要文本。香港作为中国的特别行政区,既受传统文化熏陶又有国际视野,其基础教育成果显着,香港学生自1995年以来参加TIMSS与PISA测试成绩优异。因此研究大陆与香港数学教科书的异同,通过交流与碰撞,对两地数学教科书的编写、数学教育的发展有重要的参考价值与借鉴作用。本研究以两地课程指导文件为基准,以两地现行高中数学教科书——大陆人教版《数学A版(2019)》与香港牛津版《New Century Mathematics(Second Press)2014》为研究对象。在集合与逻辑、数与代数、图形与几何、统计与概率四领域中,分别从内容分布、广度与深度、呈现方式及数学文化等五维度进行比较研究。质性研究与量化研究相结合,首先统计了两版教科书在章、节和页数的内容分布情况,两版教科书的知识点数量及其呈现方式,用模型方法分别计算出内容广度与深度,再选取重点知识进行个案分析。其次,从教科书整体、章和节三层次对二者的编写体例与栏目设置进行比较。再次,从内容分布、主题分类、栏目设置、运用形式及表达方式等六个维度比较两版教科书中的数学文化。最后,利用SPSS对上述计算结果进行统计学检验。本文得到如下结论:1.内容分布:两版教科书的内容分布趋势均可用“大杂居,小聚居”来形容,即四个领域交叉分布于每本书,但在一本书中属于同一领域的章节是顺次编排的。2.人教版整体内容的相对广度与相对深度均大于牛津版,即人教版“广而深”,牛津版“窄而浅”。3.呈现方式:人教版注重例题分析功能、问题链驱动教学、强调数学核心素养、倡导探索课外信息技术软件、通过思维导图训练梳理能力。牛津版强调例题示范功能、善用反例教学、突出数学应用价值、利用信息技术助力课堂教学、通过表格整理渗透对比思维与归纳能力。4.数学文化:数学文化总量,牛津版远多于人教版。两版数学文化在主题分类与栏目设置的分布趋势类似。人教版对数学文化的整体运用水平高于牛津版。两版对数学文化的表达形式相似,均以文字表述为主。两版教科书各具鲜明的编写特色。人教版:1.注重培养学生阅读能力与写作能力。2.注重数学史的融入。3.注重培养学生探究与建模能力。牛津版:1.分册可拆卸,便于弹性使用教科书。2.兼顾差异性,照顾学生的不同学习需求。3.培养自主管理能力,提高终身学习意识。4.重视应用,渗透STEM教育思想。5.重视反例及归纳思想在教学中的作用。基于研究结论,对高中数学教科书编写提出如下建议:1.优化教科书的自学便利性,渗透终身学习理念。2.加强教科书的系统设计,注重学段衔接。3.弹性设置课程,灵活使用教科书。4.突出栏目设置的多样化与针对性,兼顾学生差异。5.提高数学教科书的社会价值与人文价值。6.加强国民教育,开拓国际视野。
甘翔凤[6](2020)在《基于APOS理论的初中数学概念微课的设计研究 ——以“实数”概念为例》文中研究说明近年来,“互联网+人工智能+数学教育”成为国内外数学教育领域研究的热点话题,在信息技术与数学教育深度融合的发展趋势下,微课以其主题突出、短小精悍、应用方便、传播快捷等特点在教育信息化时代脱颖而出。微课不仅能作为辅助一线教师教学的有力手段,而且还能满足学生个性化和碎片化的学习需求。目前,对微课研究的重视程度逐渐提高,但微课质量参差不齐,如何设计和优化数学微课成为亟待研究的问题。“数与代数”是初中数学课程的重要领域之一,实数在这一领域中虽然占据的篇幅不大,但作为数系第二次扩充的地位就显得非同小可,实数相关概念也是解决其他数学问题的基础工具。APOS理论是研究概念学习较具影响力的模型之一,因此本文尝试在APOS理论的指导下,以湘教版八年级第3章第3节“实数”为教学案例,提出优化概念类微课的设计策略,探讨优化策略对微课教学效果的影响。本文主要从理论研究和实践研究两个维度进行详细探讨。在理论研究方面,通过理论思辨和经验总结相结合的方式,首先,查阅大量参考文献,概述国内外关于数学微课的研究简史,数学微课设计与应用的研究现状;接着,基于APOS理论的来源与基础,梳理国内外对APOS理论的研究状况及应用APOS理论设计的微课研究;然后,根据数学概念的学习规律和APOS理论的四阶段特征,提出四个数学概念微课的设计策略:活动阶段——创设情境,参与活动;过程阶段——提问导向,经历过程;对象阶段——变式概念,辨析本质;图式阶段——突出联系,形成结构;最后,在运用APOS理论设计实数概念课的可行性分析下,优化三个实数系列的教学设计案例。在实践研究方面,通过调查研究和个案访谈相结合的方式,发放调查问卷、课堂观察、采访典型学生,分析优化版微课对学生数学学习的影响,对本科生、一线教师进一步调研,对比分析概念类微课设计策略的有效性和教学参考价值。研究结果表明:超过80%的初中生、本科生、一线教师对基于APOS理论设计的优化版微课持较为积极的态度,学生学习优化版微课后对知识理解、情感态度等方面有所改善,优化版微课的教学效果比原版微课有了显着的提升。
张冬莉[7](2020)在《中国数学教科书中勾股定理内容设置变迁研究(1902-1949)》文中认为正如约翰尼斯·开普勒(Johannes Kepler)所言:“几何学有两件伟大的瑰宝:第一件是毕达哥拉斯定理,第二件是黄金分割。”勾股定理作为平面几何中最基础的定理,它是联系数学中数与形的第一定理,导致不可公度量的发现,揭示了无理数与有理数的区别,引发了第一次数学危机。勾股定理开始把数学由计算与测量的技术转变为论证与推理的科学。千百年来人们给出勾股定理的证明至今已有五百多种,是证明方法最多的一个定理,其中蕴含了大量丰富的数学思想和技巧。自徐光启翻译欧几里得的《几何原本》以来,中国不仅对古希腊算学史有了新的认识,又更深层次地了解勾股定理在中西文化中的价值。尤其在清末民国时期,勾股定理已成为中学数学教育的核心内容之一。本研究以1902-1949年中国中学数学教科书的勾股定理内容为研究对象,以文献研究法、历史研究法、个案分析法、比较研究法等为主要研究方法,将中国中学数学教科书在1902-1949年的发展历程依照学制和课程标准的颁布,分为清末时期(1902-1911)、民国初期(1912-1922)、民国课程纲要时期(1923-1928)、民国课程标准时期(1929-1949)四个发展阶段,旨在全面、系统、深入地研究勾股定理在中国中学数学教科书中的发展特点,分析影响及其变迁的因素,力求为当今的中学数学教科书中勾股定理的编写提供借鉴和启示。本研究从如下五个部分论述,具体内容如下:一、清末时期(1902-1911)中学几何教科书的勾股定理。这一时期,学制初订,中国的中学数学教育主要以学习日本数学教育为主,几何教科书的编写主要是翻译和编译日本以及一些欧美国家的几何教科书。首先从纵向上分析在这十年中几何教科书中勾股定理内容的证明方法以及定理表述上的变迁特点;其次横向的分别选取翻译日本和美国的几何教科书进行个案分析,从教科书编撰理念、编排形式、内容设置结构等维度进行了对比分析,以便从微观上详细了解这一时期数学教科书中勾股定理的变迁特点及教育价值。二、民国初期(1912-1922)中学几何教科书的勾股定理。这一时期中国的传统教育思想理念、制度模式和知识体系在西方文明的冲击下开始了艰难的转型,同时也影响几何教科书的发展。民国初期的教育继承了清末教育改革的成果,中学数学教科书的发展也日新月异。此时,自编教科书也在逐步成熟。这一时期,虽然中国自编几何教科书,通常是参考欧美教科书并加以适当筛选和增删,但是知识内容的组织与呈现,都有了显着的改进。但是其中勾股定理内容的编排上特点并不明显,还没有彻底摆脱之前教科书中的内容和形式,仍然有清末时期几何教科书的痕迹。分别选取该时期具有代表性的教科书《共和国教科书平面几何》、《民国新教科书几何学》以及汉译本《温德华士几何学》中勾股定理内容的编排设置进行详细对比分析。三、民国课程纲要时期(1923-1928)中学数学教科书的勾股定理。1922年的“新学制”颁布后,中小学实行六三三制。无论是教学方法还是教科书的编写,都在不同程度上有所变革,凸显着美国数学教育的影响。中学教科书把代数、几何、算术和三角等内容融合在一起混合教学,将原来的几何教科书架构完全打破。中国首次采用混合编写教科书的方法,不仅能使学生明白各科之间的内在联络,而且可以建构知识的统一体系。也正是在混合教学的风靡下,勾股定理内容的编排也因此受到极大的影响,无论是在章节的设置上,还是定理证明的方法、课后习题的设置上都与以往不同。故分别选取该时期具有重要研究价值的数学教科书《布利氏新式算学教科书》、《初级混合数学》、《新学制混合算学教科书》和《现代初中教科书几何》中勾股定理内容的编排设置内容特点进行详细对比分析。四、民国课程标准时期(1929-1949)中学数学教科书的勾股定理。在此阶段我国又进行了三次数学课程标准的修订,这一时期颁布的初中和高中课程标准中都要求学习平面几何。勾股定理内容则分别出现在初中和高中教科书中,但是由于对定理掌握的目标要求不同,故所在章节不同,导致使用的证明方法、表述方法和难易程度也不同。另外1932年首次设置了实验几何课程,明确实验几何教学的目标和要求,无论是在理解几何还是实验几何中都编排了勾股定理内容。虽然重视程度和教学目标都不同,但是分别从代数和几何的角度体现了勾股定理的重要性以及在教科书中有重要的地位。故选取《复兴中学教科书》和《实验几何教科书》中勾股定理内容编排进行详细分析。在该部分中,又将1912-1949年间中学数学教科书中勾股定理内容编排变迁进行了特点分析。五、以上研究中,在简要呈现各阶段的历史文化背景的同时,适当地介绍了代表性教科书作者的生平及数学教育贡献。六、结论。首先,从宏观和微观上归纳1902-1949年中国中学数学教科书中勾股定理编排特点;其次,分析了影响1902-1949年中国中学数学教科书勾股定理编排变迁的因素;再次,阐明了1902-1949年中国中学数学教科书勾股定理证明方法编排变迁的特点;最后,总结了勾股定理的编排变迁为当今数学教科书编写提供的启示与借鉴。综上所述,本研究主要以1902-1949年为时间域,研究了中国中学数学教科书中勾股定理的编排之变迁。根据各学制、课程标准(或课程纲要)对中学数学教科书的编写背景、编撰理念的要求不同,选取各阶段具有代表性的教科书中勾股定理的编排形式、证明方法等方面进行个案分析,总结了勾股定理内容编排之特点。厘清了1902-1949年中国中学数学教科书中的勾股定理内容的编排,揭示了勾股定理编排的变迁特点和影响变迁的因素,展示了清末民国时期中学勾股定理内容的设置、编排、内容选取等诸特点对当今教科书建议和教学改革的借鉴作用。
刘莹[8](2020)在《基于Articulate Storyline 3的初中数学概念类交互式微课设计与应用研究》文中提出“互联网+”时代,信息技术融入数学学科教学为数学教育的现代化发展注入了新的活力.“微课”以其“短、小、精、悍”的特点,契合学生个性化学习需求,成为当前数字化数学教学资源的开发中最受关注的形式.目前,初中数学概念类微课数量较少且以单播式微课为主,学生仅能通过浏览和观看进行学习,缺乏与学习内容的互动以及学习效果的反馈,无法实现自主适应性学习.因此,本文从技术创新以及学生与学习内容的互动需求角度综合分析,基于Articulate Storyline 3,在相关理论指导下,提出初中数学概念类交互式微课设计的基本理念、基本原则和策略.此外,本文将课例“反比例函数”应用于学生的自主学习,以期为初中数学概念类交互式微课的设计与应用提供一定的理论与实践参考.本文的主要工作如下.在理论研究方面,首先,对“微课”、“交互式微课”、“Articulate Storyline3”进行概念界定,概述国内外数学微课的相关研究,分析目前数学概念类微课设计存在的主要问题;其次,介绍数学概念类交互式微课设计的理论基础;最后,探讨了初中数学概念类交互式微课设计的基本理念、基本原则和策略.在实践研究方面,设计交互式微课“反比例函数”,并与PPT录屏的单播式微课进行了对比分析.以实验研究为主,调查研究为辅,检验交互式微课对学生自主学习的有效性.以“反比例函数”为研究课例,对学生在数学教科书、PPT录屏的单播式微课、基于Articulate Storyline 3的交互式微课三种不同自主学习策略下的学习成绩进行对比分析;通过调查问卷和访谈了解微课的使用对学生学习过程和学习体验的影响,定性和定量相结合得到实验结论.研究结果表明,在自主学习模式下,基于Articulate Storyline 3的交互式微课比教科书更有利于学生学习成绩的提高.尽管相较于PPT录屏的单播式微课,使用基于Articulate Storyline 3的交互式微课进行自主学习,学生的成绩并无显着差异;但是交互式微课对于学生的概念理解、学习方式、情感态度都有更为积极的影响,且能带来更优的学习体验.
石逸吉[9](2020)在《中国大陆与中国香港初中数学教科书比较研究》文中研究表明香港特别行政区的教育作为国际上公认的现代化教育水平较高的地区,其数学教育在国际大规模数学测评中表现优异。香港地区自1995年以来一直参与国际TIMSS研究,研究结果显示香港地区的数学成绩在连续6年的TIMSS测试中一直名列前五位。同样,香港地区的数学成绩在PISA数学领域测试中也是十分优异的。大陆与香港实行的是“一国两制”的政策方针,两地区的教育在这样的背景下也是可以相互学习借鉴,促进两地区教育水平的提升与发展。教科书是课程研制中重要部分,通过对两地区数学教科书进行对比研究,学习香港数学教科书中的优点,为大陆教科书的编写提供借鉴。通过对香港地区数学教育学习领域课程指引以及大陆义务教育阶段数学课程标准进行比较,对大陆人民教育出版社出版的《数学》以及香港牛津大学出版社出版的New Century Mathematics两个版本教科书进行细致研读,在研究过程中通过查阅资料,首先确定比较模型,其次对两地区数学课程标准总目标以及相关目标进行比较后,分别对两版本教科书中数与代数、图形与几何、概率与统计三个领域中内容分布、内容广度、内容深度、例习题难度进行比较研究,对两版本教科书中栏目设置、数学史融入、拓展性课程资源以及概念引入进行比较研究,并作具体个案分析,最后得出研究结论与启示。本文采用的研究工具,在内容深度的刻画方面主要通过知识点概念与命题的呈现方式,主要包含:直观描述、类比归纳以及演绎三个层次,在内容难度的刻画上采用鲍建生的综合难度模型,对例习题难度进行刻画。在研究方法的选取上,本文选取文献研究法、比较研究法以及个案分析法进行研究。研究得出如下结论:在“数与代数”领域,人教版教科书知识点内容呈现出窄而深特点,牛津版教科书呈现广而浅特点。在“图形与几何”领域人教版窄而深,牛津版广而浅。在“概率与统计”领域,人教版教科书内容广度大于牛津版内容广度。在例习题难度方面,人教版例习题综合难度值处于牛津版例习题1水平和2水平例习题难度之间,难度值兼顾大部分能力水平的学生。在教科书栏目设置方面,牛津版教科书栏目设置更为丰富。在拓展性课程资源设置方面,牛津版拓展资源栏目多于人教版教科书。牛津版教科书的概念引入均以活动形式引入,旨在使数学活动贯穿于数学课堂。通过比较研究,两地区教科书各具特色,人教版教科书:重视数学生活应用、数学史融入多样化、注重对学生知识网的构建;牛津版教科书:弹性装订教科书、例习题分层设置,有效提升学生学习效率、注重教科书与信息技术的整合、重视学生动手操作能力的培养、教科书学材化。研究得出如下启示:教科书编写可参考借鉴牛津版;教师在教学过程中不应该拘泥于人教版教科书,可以更多的参考牛津版教科书,包括其数学课程的活动引入等;大陆地区数学教育可借鉴牛津版教科书数学教育方式,从基础教育做起,为国家培养更多的数学人才。
牟金保[10](2020)在《西藏职前初中数学教师基于数学史的专门内容知识个案研究》文中进行了进一步梳理专门内容知识被描述为数学教学所特有的数学知识,而本文所研究的西藏职前初中数学教师基于数学史的专门内容知识就是属于专门内容知识的范畴。本研究主要关注西藏职前初中数学教师基于数学史的专门内容知识现状与HPM干预前后的变化情况。对于西藏职前初中数学教师基于数学史的专门内容知识的理论框架建构,目前尚无人进行研究,但有高中数学教师基于数学史的专门内容知识研究可供参考,也有国内外学科内容知识和教学内容知识方面的研究可供参考。由于西藏职前初中数学教师基于数学史的专门内容知识的理论框架,目前并没有现存的,为了得出本文理论框架的要素和针对西藏职前初中数学教师的研究流程,研究者针对15位专家进行了访谈,并利用模糊Delphi法通过三个步骤,对要素指标进行了筛选。研究者主要针对西藏职前初中数学教师基于数学史的专门内容知识建构了PT-HSCK九成分的九边模型,这九个知识成分维度分别为选择与引入的知识、比较与设计的知识、回应与解释的知识、探究与重演的知识、表征与关联的知识、编题与设问的知识、评估与决策的知识、判断与修正的知识、解决与运用的知识。同时,针对参与者的水平高低按照每个知识成分维度划分成五种不同的水平等级。为了更加具有针对性进行个案研究,研究者在HPM干预之前,调查了西藏地区初级中学在校学生、在职数学教师以及西藏地区职前数学教师数学史融入数学教学的现状与态度,同时调查了西藏职前初中数学教师基于数学史的专门内容知识现状。在前期调研的基础之上,研究者选定了12名西藏职前初中数学教师为本文个案研究对象,针对无理数的概念、二元一次方程组、平行线的判定、平面直角坐标系、全等三角形应用以及一元二次方程(配方法)6个知识点,设计了由24道客观题和6道主观题组成的PT-HSCK九成分五水平测试问卷。为了探讨HPM干预对西藏职前数学教师基于数学史的专门内容知识影响变化,研究者建立了HPM干预框架,并以该框架为指导对选定的12名西藏职前初中数学教师根据模糊Delphi法筛选6个知识点以及史料阅读、HPM讲授和HPM教学设计三个阶段分别进行HPM干预。在HPM干预之后,研究者根据问卷调查数据、访谈和作业单反馈分析了西藏职前初中数学教师基于数学史的专门内容知识水平变化情况。从总体结果来看,通过对PT-HSCK九个知识成分维度的前后测成对t检验发现,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测的水平显着高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显着性差异,但后测的均值还是要略微高于前测。从藏族职前初中数学教师分析结果来看,藏族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显着高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显着性差异。从汉族职前初中数学教师分析结果来看,汉族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显着高于前测的水平;而选择与引入、比较与设计这两种维度,前后测水平无显着性差异,但后测的均值还是要略微高于前测。总之,HPM干预对西藏职前初中数学教师基于数学史的专门内容知识水平提高具有促进作用,同时本文也可以为西藏职前初中数学教师培养提供实施理论框架和有针对性推广的数据支持。
二、无理数的发现及其启示(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、无理数的发现及其启示(论文提纲范文)
(2)基于数学史网络研修的在职初中数学教师观念发展研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 引论 |
1.1 背景 |
1.1.1 数学史教育价值呼吁实证研究的验证 |
1.1.2 教育改革落实亟需教师观念的调整 |
1.1.3 信息技术发展强力支撑教师网络研修的推行 |
1.2 研究问题 |
1.3 研究意义 |
1.4 论文结构概览 |
第2章 文献综述 |
2.1 数学教师观念 |
2.1.1 国内教师信念及观念研究述评 |
2.1.2 国外教师信念及观念研究述评 |
2.2 数学史与教师专业发展 |
第3章 概念框架 |
3.1 理论的作用 |
3.2 研究问题中的理论要素 |
3.3 观念及信念系统 |
3.3.1 信念内涵:信念和知识 |
3.3.2 信念结构:信念系统 |
3.4 教师的数学观 |
3.4.1 三种概观和判断 |
3.4.2 三种数学观 |
3.4.3 大纲及课标中的数学观 |
3.5 教师的数学教学观 |
3.5.1 三种数学教学观 |
3.5.2 大纲及课标中的数学教学观 |
3.6 理论视角的联系 |
3.7 研究问题的细化 |
第4章 研究设计 |
4.1 项目背景 |
4.1.1 主题选择 |
4.1.2 项目组织 |
4.2 研究方法 |
4.3 数据收集 |
4.4 研究工具 |
4.5 数据分析 |
4.6 信效度分析 |
第5章 教师观念变化趋势 |
5.1 数学观变化趋势的量化分析 |
5.2 数学观变化趋势的质性分析 |
5.2.1 数学演进 |
5.2.2 数学应用 |
5.2.3 数学本质 |
5.3 数学教学观变化趋势的量化分析 |
5.4 数学教学观变化趋势的质性分析 |
5.4.1 教学目标 |
5.4.2 教学过程及师生角色 |
5.4.3 学生学习 |
5.4.4 教学资源 |
第6章 教师观念转变案例研究 |
6.1 个案 1:孙老师 |
6.1.1 孙老师的数学观 |
6.1.2 孙老师的数学教学观 |
6.1.3 孙老师案例小结 |
6.2 个案 2:侯老师 |
6.2.1 侯老师的数学观 |
6.2.2 侯老师的数学教学观 |
6.2.3 侯老师案例小结 |
6.3 个案 3:李老师 |
6.3.1 李老师的数学观 |
6.3.2 李老师的数学教学观 |
6.3.3 李老师案例小结 |
6.4 跨案例分析 |
6.4.1 数学观 |
6.4.2 数学教学观 |
6.4.3 发展机制 |
第7章 结论 |
第8章 讨论 |
8.1 与已有研究的联系 |
8.2 可能回答的问题 |
8.3 回顾理论与方法论 |
8.4 回顾教育研究的三个方面 |
8.5 启示、局限与展望 |
参考文献 |
附录 |
附录1 研修主题示例 |
附录2 数学观及数学教学观开放问卷(研修前后) |
附录3 函数主题反思单示例 |
附录4 个案教师访谈提纲(研修后) |
附录5 《中学数学教师数学观问卷》正式问卷 |
附录6 a《中学数学教师数学教学观问卷》初测问卷 |
附录6 b《中学数学教师数学教学观问卷》正式问卷 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(3)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 教师教育者的专业发展需要关注 |
1.1.2 数学教师教育者的研究值得重视 |
1.1.3 数学教师教育者的专业知识有待探索 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献述评 |
2.1 数学教师教育者的专业知识 |
2.1.1 数学教师教育者的专业知识框架 |
2.1.2 数学教师教育者的专业知识测评 |
2.1.3 文献小结 |
2.2 数学教师教育者的专业发展 |
2.2.1 数学教师教育者的专业发展框架 |
2.2.2 数学教师教育者的专业发展调查 |
2.2.3 文献小结 |
2.3 数学教师教育者的工作实践 |
2.3.1 数学教师教育课堂的学习任务框架 |
2.3.2 数学教师教育课堂的学习任务实践 |
2.3.3 文献小结 |
2.4 文献述评总结 |
第3章 研究方法 |
3.1 研究设计 |
3.1.1 文献分析与框架确立 |
3.1.2 问卷调查与深度访谈 |
3.1.3 现场观察与案例分析 |
3.2 研究对象 |
3.2.1 专家论证对象 |
3.2.2 问卷调查对象 |
3.2.3 深度访谈对象 |
3.2.4 案例研究对象 |
3.3 研究工具 |
3.3.1 论证手册 |
3.3.2 调查问卷 |
3.3.3 访谈提纲 |
3.3.4 观察方案 |
3.4 数据收集 |
3.4.1 专家论证 |
3.4.2 问卷调查 |
3.4.3 深度访谈 |
3.4.4 现场观察 |
3.5 数据分析 |
3.5.1 专家论证 |
3.5.2 问卷与访谈 |
3.5.3 现场观察 |
第4章 研究结果(一):面向教师教育的数学知识框架 |
4.1 文献分析 |
4.1.1 已有框架选取 |
4.1.2 相关成分析取 |
4.1.3 相关类别编码 |
4.2 框架构建 |
4.2.1 相关类别合并 |
4.2.2 相应成分生成 |
4.2.3 初步框架构建 |
4.3 框架论证 |
4.3.1 第一轮论证 |
4.3.2 第二轮论证 |
4.3.3 第三轮论证 |
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识 |
5.1 学科内容知识 |
5.1.1 一般内容知识 |
5.1.2 专门内容知识 |
5.1.3 关联内容知识 |
5.2 教学内容知识 |
5.2.1 内容与学生知识 |
5.2.2 内容与教学知识 |
5.2.3 内容与课程知识 |
5.3 高观点下的数学知识 |
5.3.1 学科高等知识 |
5.3.2 学科结构知识 |
5.3.3 学科应用知识 |
5.4 数学哲学知识 |
5.4.1 本体论知识 |
5.4.2 认识论知识 |
5.4.3 方法论知识 |
5.5 总体分析 |
5.5.1 学科内容知识 |
5.5.2 教学内容知识 |
5.5.3 高观点下的数学知识 |
5.5.4 数学哲学知识 |
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识 |
6.1 案例1 |
6.1.1 第一轮观察:平均值不等式 |
6.1.2 第二轮观察:对数的概念 |
6.1.3 案例1 总体分析 |
6.2 案例2 |
6.2.1 第一轮观察:幂函数的概念 |
6.2.2 第二轮观察:函数的基本性质 |
6.2.3 案例2 总体分析 |
6.3 案例3 |
6.3.1 第一轮观察:幂函数的概念 |
6.3.2 第二轮观察:出租车运价问题 |
6.3.3 案例3 总体分析 |
6.4 案例4 |
6.4.1 第一轮观察:反函数的概念 |
6.4.2 第二轮观察:反函数的图像 |
6.4.3 案例4 总体分析 |
6.5 跨案例分析 |
6.5.1 学科内容知识 |
6.5.2 教学内容知识 |
6.5.3 高观点下的数学知识 |
6.5.4 数学哲学知识 |
6.5.5 案例总体分析 |
第7章 研究结论及启示 |
7.1 研究结论 |
7.1.1 面向教师教育的数学知识框架 |
7.1.2 高中数学教研员具备的面向教师教育的数学知识 |
7.1.3 高中数学教研活动中反映的面向教师教育的数学知识 |
7.2 研究启示 |
7.2.1 教师教育者的专业标准制订需要关注学科性 |
7.2.2 数学教师教育者的专业培训需要提升针对性 |
7.2.3 数学教师专业发展项目规划需要增加多元性 |
7.3 研究局限 |
7.4 研究展望 |
7.4.1 拓展数学教师教育者的专业知识研究 |
7.4.2 深入数学教师教育者的专业发展研究 |
7.4.3 延伸数学教师教育者的工作实践研究 |
参考文献 |
附录 |
附录1 论证手册(第一轮) |
附录2 论证手册(第二轮) |
附录3 论证手册(第三轮) |
附录4 调查问卷(第一版) |
附录5 调查问卷(第二版) |
附录6 调查问卷(第三版) |
附录7 调查问卷(第四版) |
附录8 调查问卷(第五版) |
附录9 访谈提纲 |
附录10 观察方案 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(4)基于数学核心素养的初中生逻辑推理能力培养的实践研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 研究问题 |
第二章 文献综述与评析 |
2.1 数学素养研究综述 |
2.2 核心素养研究综述 |
2.3 数学核心素养研究综述 |
2.4 数学逻辑推理能力研究现状 |
2.5 文献综述小结 |
第三章 核心概念界定与理论基础 |
3.1 核心概念界定 |
3.2 理论基础 |
第四章 研究设计 |
4.1 研究技术路线分析 |
4.2 初中生数学逻辑推理能力培养现状研究 |
4.3 初中生数学逻辑推理能力培养影响因素研究 |
4.4 初中生数学逻辑推理能力培养策略实验研究 |
第五章 初中生数学逻辑推理能力的现状分析 |
5.1 初中生数学逻辑推理能力总体现状分析 |
5.2 初中生数学逻辑推理能力各亚维度现状分析 |
5.3 初中生数学逻辑推理能力差异性分析 |
5.4 分析与讨论 |
第六章 初中生数学逻辑推理能力影响因素的研究 |
6.1 学生问卷数据分析 |
6.2 教师访谈数据分析 |
6.3 初中生数学逻辑推理能力测试卷作答情况分析 |
6.4 小结与讨论 |
第七章 初中生数学逻辑推理能力培养策略的研究 |
7.1 培养策略 |
7.2 数据分析 |
7.3 教学建议 |
第八章 研究结论、不足与展望 |
8.1 研究结论 |
8.2 研究不足与展望 |
参考文献 |
附录1 初中生逻辑推理能力调查问卷 |
附录2 数学逻辑推理能力影响因素问卷(单选) |
附录3 初中生逻辑推理能力调查问卷(后测) |
在学期间的研究成果 |
致谢 |
(5)中国大陆与中国香港高中数学教科书比较研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 问题提出 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 研究意义 |
1.4 文献综述 |
1.4.1 数学课程标准比较研究 |
1.4.2 数学教科书研究 |
1.4.3 香港数学教育研究 |
1.4.4 数学文化研究现状 |
1.4.5 评述 |
1.5 研究方法与思路 |
1.5.1 研究方法 |
1.5.2 研究思路 |
1.6 创新之处 |
第2章 研究设计 |
2.1 研究对象 |
2.1.1 人教A版教科书概况 |
2.1.2 牛津版教科书概况 |
2.2 研究模型 |
2.2.1 内容广度模型 |
2.2.2 内容深度模型 |
2.2.3 数学文化研究维度 |
第3章 大陆课程标准与香港课程指引比较 |
3.1 数学课程作用的比较 |
3.2 大陆课程目标与香港课程宗旨比较 |
3.3 课程框架比较 |
3.4 知识点呈现顺序比较 |
第4章 两版教科书内容分布比较研究 |
4.1 “集合与逻辑”内容分布比较 |
4.1.1 人教版高中数学教科书 |
4.1.2 牛津版高中数学教科书 |
4.1.3 比较结果分析 |
4.2 “数与代数”领域内容分布比较 |
4.2.1 人教版高中数学教科书 |
4.2.2 牛津版高中数学教科书 |
4.2.3 比较结果分析 |
4.3 “图形与几何”领域内容分布比较 |
4.3.1 人教版高中数学教科书 |
4.3.2 牛津版高中数学教科书 |
4.3.3 比较结果分析 |
4.4 “统计与概率”领域内容分布比较 |
4.4.1 人教版高中数学教科书 |
4.4.2 牛津版高中数学教科书 |
4.4.3 比较结果分析 |
4.5 两地教科书内容分布总体比较 |
第5章 两版教科书内容广度与深度比较研究 |
5.1 “集合与逻辑”领域内容广度与深度比较 |
5.1.1 两版教科书内容广度与深度比较 |
5.1.2 两版教科书内容深度案例分析 |
5.2 “数与代数”领域内容广度与深度比较 |
5.2.1 两版教科书内容广度与深度 |
5.2.2 两版教科书内容深度案例分析 |
5.3 “图形与几何”领域内容广度与深度比较 |
5.3.1 两版教科书内容广度与深度 |
5.3.2 两版教科书内容深度案例分析 |
5.4 “统计与概率”内容广度与深度比较 |
5.4.1 两版教科书内容广度与深度 |
5.4.2 两版教科书内容深度案例分析 |
5.5 两版教科书整体广度与深度比较 |
5.5.1 整体内容广度比较 |
5.5.2 整体内容深度比较 |
第6章 两版教科书呈现方式比较研究 |
6.1 人教版教科书编排体例与栏目设置 |
6.1.1 整体编排体例 |
6.1.2 章的编排体例 |
6.1.3 节编排体例 |
6.2 牛津版教科书编排体例与栏目设置 |
6.2.1 整体编排体例 |
6.2.2 章编排体例 |
6.2.3 节编排体例 |
第7章 两版教科书数学文化比较研究 |
7.1 数学文化内容分布比较 |
7.2 数学文化主题比较 |
7.2.1 数学史主题分类 |
7.2.2 其他数学文化主题分类 |
7.3 数学文化的栏目分布 |
7.4 数学文化的运用方式比较 |
7.4.1 数学史运用方式 |
7.4.2 其他数学文化运用方式 |
7.5 数学文化的表现形式比较 |
第8章 结论、建议与反思 |
8.1 结论 |
8.1.1 内容分布 |
8.1.2 内容广度与深度 |
8.1.3 编写体例与栏目设置 |
8.1.4 数学文化 |
8.1.5 两版教科书编写特色 |
8.2 建议 |
8.2.1 优化教科书的自学便利性,渗透终身学习理念 |
8.2.2 加强教科书的系统设计,注重学段衔接 |
8.2.3 弹性设置课程,灵活使用教科书 |
8.2.4 突出栏目设置的多样化与针对性,兼顾学生差异 |
8.2.5 注重数学教科书的社会价值与人文价值 |
8.2.6 加强国民教育,开拓国际视野 |
8.3 反思与展望 |
参考文献 |
附录 |
附录1 |
附录2 |
致谢 |
攻读硕士学位期间主要科研成果 |
(6)基于APOS理论的初中数学概念微课的设计研究 ——以“实数”概念为例(论文提纲范文)
中文摘要 |
abstract |
第1章 前言 |
1.1 研究背景与问题 |
1.2 研究思路与方法 |
1.3 研究内容与过程 |
1.4 研究目的与意义 |
第2章 相关理论研究概述 |
2.1 关于数学微课的概述 |
2.1.1 国内外对数学微课的研究综述 |
2.1.2 微课的概念界定 |
2.1.3 数学微课的设计与应用 |
2.2 关于APOS理论的概述 |
2.2.1 APOS理论的来源与基础 |
2.2.2 国内外对APOS理论的研究综述 |
2.2.3 基于APOS理论设计的微课研究 |
第3章 基于APOS理论的数学概念微课设计策略 |
3.1 中学数学概念教学的基本问题 |
3.1.1 数学概念的界定 |
3.1.2 数学概念的基本特征 |
3.1.3 数学概念学习的基本形式 |
3.1.4 影响数学概念学习的因素 |
3.2 APOS理论的内涵与四阶段特征 |
3.3 数学概念教学常态课与APOS理论概念教学的对比分析 |
3.3.1 概念教学常态课的特征 |
3.3.2 基于APOS理论指导下的概念教学特征 |
3.3.3 对比分析概念教学常态课与结合APOS理论概念教学的优劣 |
3.4 实数概念课运用APOS理论设计的可行性分析 |
3.4.1 教材编排建议 |
3.4.2 学生认知结构 |
3.5 基于APOS理论的实数概念微课的设计策略 |
3.5.1 活动阶段——创设情境,参与活动 |
3.5.2 过程阶段——提问导向,经历过程 |
3.5.3 对象阶段——变式概念,辨析本质 |
3.5.4 图式阶段——突出联系,形成结构 |
第4章 APOS理论指导下实数概念微课的教学设计案例 |
4.1 《看见无理数》的教学案例分析 |
4.1.1 微课背景与策略浅析 |
4.1.2 微课教学设计策略的新旧对比 |
4.1.3 微课优化前、后的教学实录分析 |
4.2 《再探“数”家族》的教学案例分析 |
4.2.1 微课背景与策略浅析 |
4.2.2 微课教学设计策略的新旧对比 |
4.2.3 微课优化前、后的教学实录分析 |
4.3 《回首“数”运算》的教学案例分析 |
4.3.1 微课背景与策略浅析 |
4.3.2 微课教学设计策略的新旧对比 |
4.3.3 微课优化前、后的教学实录分析 |
第5章 基于APOS理论的实数概念微课的评价分析 |
5.1 问卷调查 |
5.1.1 调查目的 |
5.1.2 调查对象 |
5.1.3 调查过程概况 |
5.1.4 数据分析与结果 |
5.2 个案访谈 |
5.2.1 访谈目的 |
5.2.2 访谈对象 |
5.2.3 访谈提纲与结果 |
第6章 结束语 |
6.1 研究回顾 |
6.1.1 对基于APOS理论研究的回顾 |
6.1.2 对微课教学调查研究的回顾 |
6.2 研究结论 |
6.3 研究反思 |
6.4 研究展望 |
参考文献 |
附录 |
在读硕士学位期间公开发表的论文题目 |
致谢 |
(7)中国数学教科书中勾股定理内容设置变迁研究(1902-1949)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.3.3 研究现状评述 |
1.4 研究方法与思路 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.5 创新之处 |
第2章 清末中学数学教科书中的勾股定理 |
2.1 历史背景 |
2.1.1 “癸卯学制”的中学数学教育 |
2.1.2 清末中学数学教科书编译概况 |
2.2 翻译日本的几何教科书中勾股定理内容个案分析 |
2.2.1 编译者简介 |
2.2.2 编写理念及编排形式 |
2.2.3 勾股定理内容的结构 |
2.2.4 特点分析 |
2.3 翻译美国的几何教科书中勾股定理内容个案分析 |
2.3.1 编译者简介 |
2.3.2 编写理念及编排形成 |
2.3.3 勾股定理内容的结构 |
2.3.4 特点分析 |
2.4 清末教科书中勾股定理内容的结构及其特点(1902-1911) |
2.4.1 编写理念及编排形式 |
2.4.2 勾股定理内容设置的形式 |
2.4.3 勾股定理的内容表述之变迁及特点分析 |
2.4.4 勾股定理证明方法特点及教育价值分析 |
2.5 小结 |
第3章 民国初期中学数学教科书中的勾股定理 |
3.1 历史背景 |
3.1.1 “壬子癸丑学制”的数学教育 |
3.1.2 中学数学教科书编译概况 |
3.2 《共和国教科书平面几何》中“勾股定理”内容编排概述 |
3.2.1 编者简介 |
3.2.2 编写理念及编排形成 |
3.2.3 勾股定理内容的结构 |
3.2.4 特点分析 |
3.3 《民国新教科书几何学》中的“勾股定理”内容编排概述 |
3.3.1 编译者简介 |
3.3.2 编写理念及编排形成 |
3.3.3 勾股定理内容的结构 |
3.3.4 特点分析 |
3.4 汉译本《温德华士几何学》中的“勾股定理”内容编排概述 |
3.4.1 编译者简介 |
3.4.2 编写理念及编排形成 |
3.4.3 勾股定理内容的结构 |
3.4.4 特点分析 |
3.5 小结 |
3.5.1 勾股定理证明方法无明显差异 |
3.5.2 从面积和射影角度讨论钝角和锐角三角形的不同情形 |
3.5.3 习题数量参差不齐 |
3.5.4 对几何作图的认识逐渐加强 |
第4章 课程纲要时期的中学数学教科书中勾股定理 |
4.1 历史背景 |
4.1.1 “壬戌学制”下的数学教育 |
4.1.2 中学数学教科书编纂概况 |
4.2 混合教学数学教科书中的“勾股定理” |
4.2.1 《布利氏新式算学教科书》中“勾股定理”内容编排概述 |
4.2.2 《初级混合数学》中“勾股定理”内容编排概述 |
4.2.3 《新学制混合算学教科书》中“勾股定理”内容的编排概述 |
4.3 《现代初中教科书几何》中“勾股定理”内容的编排概述 |
4.3.1 编译者简介 |
4.3.2 编写理念及编排形成 |
4.3.3 勾股定理内容的结构 |
4.3.4 特点分析 |
4.4 小结 |
4.4.1 勾股定理内容分布在多个章节中 |
4.4.2 证明方法由一到多,割补法逐渐成为主要方式 |
4.4.3 由勾股定理向任意三角形推广 |
4.4.4 习题中理解型题目与作图题目相结合 |
第5章 课程标准时期的中学数学教科书中勾股定理 |
5.1 历史背景 |
5.1.1 中学算学课程标准下的中学数学教育 |
5.1.2 中学数学教科书编译概况 |
5.2 复兴中学教科书中“勾股定理”内容编排概述 |
5.2.1 部分编撰者简介 |
5.2.2 编写理念及编排形成 |
5.2.3 勾股定理内容的结构 |
5.2.4 特点分析 |
5.3 实验几何教科书中的勾股定理—以《初级中学实验几何学》为例 |
5.3.1 编撰者简介 |
5.3.2 编写理念及编排形式 |
5.3.3 勾股定理内容的结构 |
5.3.4 特点分析 |
5.4 课程标准时期教科书中勾股定理变迁之特点分析 |
5.4.1 数学史的融入 |
5.4.2 定理证明实验法与演绎法并重 |
5.4.3 体现从特殊到一般的归纳思想方法 |
5.5 民国时期数学教科书中勾股定理内容编排变迁特点分析(1912-1949) |
5.5.1 定理证明以方法为经,以教材为纬 |
5.5.2 三角形内对锐角或钝角之三边情况贯穿于教科书中 |
5.5.3 从正方形到任意相似图形 |
第6章 结论 |
6.1 清末民国中学数学教科书中勾股定理编排特点 |
6.1.1 数学教科书中定理命名的演变 |
6.1.2 作为小节内容编排在单元中 |
6.1.3 定理表述以“形的勾股定理”为主 |
6.1.4 结构体系独特,勾股定理的推广内容丰富 |
6.1.5 自编数学教科书中勾股定理史料贯彻爱国精神 |
6.2 影响中学数学教科书中勾股定理内容编排的因素 |
6.2.1 外部因素 |
6.2.2 内部因素 |
6.3 清末民国中学数学教科书中勾股定理证明方法编排之变迁 |
6.3.1 欧几里得证法始终贯穿在教科书中 |
6.3.2 证明方法由一变多,从演绎法过渡到拼补法 |
6.3.3 中国古代“赵爽弦图”仅在课后习题中出现 |
6.3.4 实验几何时期证法主要以综合法为主 |
6.3.5 清末民国时期中学勾股定理编排中存在的问题 |
6.4 清末民国中学数学教科书中勾股定理内容变迁的启示与借鉴 |
6.4.1 编排形式与内容体系应力求严谨 |
6.4.2 勾股定理内容编排重视趣味性、启发性与探究性 |
6.4.3 实验证明和理论证明相辅相成 |
6.4.4 从勾股定理到我们的思想 |
6.5 研究的不足与展望 |
参考文献 |
致谢 |
攻读博士学位期间的科研成果 |
(8)基于Articulate Storyline 3的初中数学概念类交互式微课设计与应用研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.1.1 理论要求 |
1.1.2 现实诉求 |
1.2 研究目的 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 研究问题 |
1.5 研究方法 |
1.6 研究思路 |
第二章 相关研究综述 |
2.1 核心概念的界定 |
2.1.1 微课 |
2.1.2 交互式微课 |
2.1.3 Articulate Storyline 3 |
2.2 数学微课相关研究综述 |
2.2.1 国外的相关研究综述 |
2.2.2 国内的相关研究综述 |
2.2.3 研究评价 |
第三章 理论基础 |
3.1 建构主义学习理论 |
3.2 认知负荷理论 |
3.3 多媒体学习认知理论 |
3.4 多媒体学习的社会代理理论 |
3.5 教学交互层次塔理论 |
第四章 基于Articulate Storyline3 的数学概念类交互式微课的设计研究 |
4.1 设计理念 |
4.1.1 以学生为中心 |
4.1.2 教学优化 |
4.2 设计原则 |
4.2.1 积极情意原则 |
4.2.2 信息优化原则 |
4.2.3 多维交互原则 |
4.2.4 自主适应原则 |
4.3 设计策略 |
4.3.1 情境化策略 |
4.3.2 均衡负荷策略 |
4.3.3 交互策略 |
4.3.4 个性化策略 |
第五章 基于Articulate Storyline3 的数学概念类交互式微课设计案例 |
5.1 “反比例函数”交互式微课教学设计 |
5.2 “反比例函数”交互式微课与单播式微课实录对比分析 |
5.3 小结 |
第六章 基于Articulate Storyline3 的初中数学概念类交互式微课应用的实证研究 |
6.1 实验方案设计 |
6.1.1 实验目的 |
6.1.2 实验对象 |
6.1.3 实验变量 |
6.1.4 实验方法与工具 |
6.1.5 实验过程 |
6.2 实验数据分析与结果 |
6.2.1 测试成绩分析与结果 |
6.2.2 调查问卷分析与结果 |
6.2.3 访谈分析与结果 |
6.3 研究结果总体分析 |
第七章 总结与展望 |
7.1 研究结论 |
7.2 基于Articulate Storyline3 的初中数学概念类交互式微课设计与应用建议 |
7.2.1 数学概念类交互式微课设计的建议 |
7.2.2 数学概念类交互式微课应用的建议 |
7.3 研究反思 |
7.4 研究展望 |
参考文献 |
附录 |
附录1 |
附录2 |
附录3 |
附录4 |
攻读硕士学位期间的研究成果 |
致谢 |
(9)中国大陆与中国香港初中数学教科书比较研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 研究方法 |
1.3.1 文献研究法 |
1.3.2 比较研究法 |
1.3.3 个案分析法 |
1.4 文献综述 |
1.4.1 国外研究综述 |
1.4.2 国内研究综述 |
1.5 研究思路 |
1.6 研究工具 |
1.6.1 内容广度 |
1.6.2 内容深度 |
1.6.3 例习题难度 |
1.7 创新之处 |
第2章 大陆与香港初中数学课程标准比较研究 |
2.1 课程总目标的比较 |
2.2 “数与代数”内容标准比较 |
2.3 “图形与几何”内容标准比较 |
2.4 “统计与概率”内容标准比较 |
第3章 教科书“数与代数”内容比较 |
3.1 “数与代数”内容分布比较 |
3.1.1 人教版教科书 |
3.1.2 牛津版教科书 |
3.1.3 两版教科书代数内容整体分布比较 |
3.2 “数与代数”内容广度比较 |
3.2.1 内容知识统计结果 |
3.2.2 内容广度分析 |
3.3 “数与代数”内容深度比较 |
3.4 “数与代数”例题比较 |
3.4.1 例题数量比较 |
3.4.2 例题难度比较 |
3.4.3 一道例题的个案分析 |
3.5 “数与代数”习题比较 |
3.5.1 习题数量比较 |
3.5.2 习题难度比较 |
3.6 “数与代数”个案分析 |
3.6.1 二元一次方程 |
3.6.2 函数 |
第4章 教科书“图形与几何”内容比较 |
4.1 “图形与几何”内容分布比较 |
4.1.1 人教版教科书 |
4.1.2 牛津版教科书 |
4.1.3 两版教科书几何内容整体分布比较 |
4.2 “图形与几何”内容广度比较 |
4.2.1 内容知识点统计 |
4.2.2 内容广度分析 |
4.3 “图形与几何”内容深度比较 |
4.4 “图形与几何”例题比较 |
4.4.1 例题数量比较 |
4.4.2 例题难度比较 |
4.4.3 一道例题的个案分析 |
4.5 “图形与几何”习题比较 |
4.5.1 习题数量比较 |
4.5.2 习题难度比较 |
4.6 “图形与几何”个案分析——勾股定理 |
4.6.1 探究“勾股定理”的内容 |
4.6.2 “勾股定理”的应用 |
4.6.3 “勾股定理”逆定理 |
第5章 教科书“统计与概率”内容比较 |
5.1 “统计与概率”内容分布比较 |
5.1.1 人教版教科书 |
5.1.2 牛津版教科书 |
5.1.3 两版教科书统计内容整体分布比较 |
5.2 “统计与概率”内容广度比较 |
5.2.1 内容知识点统计 |
5.2.2 内容广度分析 |
5.3 “统计与概率”内容深度比较 |
5.4 “统计与概率”例题比较 |
5.4.1 例题数量比较 |
5.4.2 例题难度比较 |
5.4.3 一道例题的个案分析 |
5.5 “统计与概率”习题比较 |
5.5.1 习题数量比较 |
5.5.2 习题难度比较 |
5.6 “统计与概率”统计活动个案分析 |
第6章 教科书内容呈现方式比较 |
6.1 教科书栏目设置比较 |
6.2 教科书数学史融入比较 |
6.3 教科书拓展性课程资源比较 |
6.4 教科书概念引入比较 |
第7章 研究结论与启示 |
7.1 研究结论 |
7.1.1 教科书内容比较结论 |
7.1.2 内容呈现方式结论 |
7.1.3 两版本教科书编写特色 |
7.2 启示 |
7.2.1 对教材编写等相关工作者 |
7.2.2 对一线数学教师 |
7.2.3 针对初中培养数学人才角度 |
7.3 需要进一步研究分析的问题 |
参考文献 |
附录 |
致谢 |
攻读硕士学位期间主要科研成果 |
(10)西藏职前初中数学教师基于数学史的专门内容知识个案研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究缘起 |
1.2 研究背景 |
1.3 研究问题 |
1.4 研究意义 |
1.5 相关概念界定 |
1.6 论文的框架结构 |
第2章 文献综述 |
2.1 藏族地区中小学数学教育研究现状 |
2.2 数学史融入数学教育的必要性 |
2.3 HPM研究的现状 |
2.4 学科内容知识的研究 |
2.5 HSCK理论框架的研究 |
第3章 研究设计与方法 |
3.1 研究对象 |
3.1.1 现状和态度研究对象 |
3.1.2 个案研究的对象 |
3.2 研究流程 |
3.3 研究方法 |
3.3.1 个案研究 |
3.3.2 问卷调查 |
3.3.3 访谈 |
3.4 研究工具 |
3.4.1 数学史融入数学教学现状与态度问卷 |
3.4.2 PT-HSCK问卷 |
3.5 数据处理与分析 |
3.5.1 数据编码 |
3.5.2 量化数据及其分析 |
3.5.3 质性数据及其分析 |
第4章 PT-HSCK理论框架的建构 |
4.1 PT-HSCK理论框架建构的动机 |
4.2 基于模糊Delphi法的PT-HSCK理论框架建构 |
4.2.1 评估指标 |
4.2.2 专家反馈资料之适度检验 |
4.2.3 初步重要的评估指标之筛选 |
4.2.4 相对重要程度之阈值 |
4.3 PT-HSCK的九种知识成分 |
4.4 PT-HSCK的五级水平划分 |
4.5 HPM干预框架 |
第5章 干预前现状与态度调查研究 |
5.1 西藏数学史融入数学教学的现状与态度 |
5.1.1 西藏数学史融入数学教学现状的调查 |
5.1.2 西藏在职初中数学教师态度的调查 |
5.2 西藏职前初中数学教师态度的调查 |
5.3 PT-HSCK的现状调查 |
第6章 职前初中数学教师的HPM干预 |
6.1 HPM干预的前期准备 |
6.2 HPM干预案例一:无理数的概念 |
6.2.1 史料阅读阶段 |
6.2.2 HPM讲授阶段 |
6.2.3 HPM教学设计阶段 |
6.2.4 HPM干预后的访谈与作业单反馈 |
6.3 HPM干预案例二:二元一次方程组 |
6.3.1 史料阅读阶段 |
6.3.2 HPM讲授阶段 |
6.3.3 HPM教学设计阶段 |
6.3.4 HPM干预后的访谈与作业单反馈 |
6.4 HPM干预案例三:平行线的判定 |
6.4.1 史料阅读阶段 |
6.4.2 HPM讲授阶段 |
6.4.3 HPM教学设计阶段 |
6.4.4 HPM干预后的访谈与作业单反馈 |
6.5 HPM干预案例四:平面直角坐标系 |
6.5.1 史料阅读阶段 |
6.5.2 HPM讲授阶段 |
6.5.3 HPM教学设计阶段 |
6.5.4 HPM干预后的访谈与作业单反馈 |
6.6 HPM干预案例五:全等三角形应用 |
6.6.1 史料阅读阶段 |
6.6.2 HPM讲授阶段 |
6.6.3 HPM教学设计阶段 |
6.6.4 HPM干预后的访谈与作业单反馈 |
6.7 HPM干预案例六:一元二次方程(配方法) |
6.7.1 史料阅读阶段 |
6.7.2 HPM讲授阶段 |
6.7.3 HPM教学设计阶段 |
6.7.4 HPM干预后的访谈与作业单反馈 |
第7章 干预结果及其变化分析 |
7.1 职前数学教师的总体变化分析 |
7.2 藏族职前数学教师的变化分析 |
7.3 汉族职前数学教师的变化分析 |
7.4 藏族与汉族职前数学教师的对比分析 |
第8章 研究结论与启示 |
8.1 研究结论 |
8.1.1 西藏数学史融入数学教学以及PT-HSCK的现状与态度 |
8.1.2 建立了理论框架以及干预框架 |
8.1.3 HPM干预对西藏职前初中数学教师的影响 |
8.2 研究启示 |
8.3 研究局限 |
8.4 研究展望 |
参考文献 |
附录 |
附录1 :西藏初中阶段数学史融入数学教学现状问卷(学生用) |
附录2 :西藏初中阶段数学史融入数学教学现状问卷(教师用) |
附录3 :西藏初中阶段数学史融入数学教学态度问卷 |
附录4 :PT-HSCK测试问卷 |
攻读学位期间发表的学术论文 |
致谢 |
四、无理数的发现及其启示(论文参考文献)
- [1]初三学生数感现状调查研究 ——以兰州市三所初中为例[D]. 梁佳田. 西北师范大学, 2021
- [2]基于数学史网络研修的在职初中数学教师观念发展研究[D]. 孙丹丹. 华东师范大学, 2021(09)
- [3]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
- [4]基于数学核心素养的初中生逻辑推理能力培养的实践研究[D]. 范强华. 合肥师范学院, 2021(09)
- [5]中国大陆与中国香港高中数学教科书比较研究[D]. 宋佳. 内蒙古师范大学, 2021(08)
- [6]基于APOS理论的初中数学概念微课的设计研究 ——以“实数”概念为例[D]. 甘翔凤. 广西师范大学, 2020(01)
- [7]中国数学教科书中勾股定理内容设置变迁研究(1902-1949)[D]. 张冬莉. 内蒙古师范大学, 2020(07)
- [8]基于Articulate Storyline 3的初中数学概念类交互式微课设计与应用研究[D]. 刘莹. 青岛大学, 2020(01)
- [9]中国大陆与中国香港初中数学教科书比较研究[D]. 石逸吉. 内蒙古师范大学, 2020(08)
- [10]西藏职前初中数学教师基于数学史的专门内容知识个案研究[D]. 牟金保. 华东师范大学, 2020(12)