问:勾股定理小论文
- 答:瀚海之上,我的衣袂飘扬。大漠荒烟,我的泪画作洞天阳光。我用生命为你一舞,展现天地间绝美让散的瀚海之上,我的衣袂飘扬。大漠和悔荒烟,我的泪画作洞天阳光。我用生命为你一舞,展现天地间绝美的风华…风华…瀚海之上,我的衣袂飘扬。大漠荒烟,我的坦棚氏泪画作洞天阳光。我用生命为你一舞,展现天地间绝美的风华…瀚海之上,我的衣袂飘扬。大漠荒烟,我的泪画作洞天阳光。我用生命为你一舞,展现天地间绝美的风华…
- 答:具体如下:
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角困液宽形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周汪亮髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘埋耐,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 - 答:也是为凳坦卜了作业。
同枣穗是初中的。
至于那么认真么。
随便找一篇就OK。
反正老师信冲从来都不看暑假寒假作业。
写了也白写。
问:勾股定理的数学小论文 200字-300字不要太多 最好200字 因为我只是初一升初二别太深奥 听不懂... 谢谢O(∩_
- 答:勾股定理指的是“在直角三角形中两条直角边的平方和等于斜边的平方。”这个定理虽然只是简单的一句话但是它却有着十分悠久的历史尤其是它那种“形数结合”的方法影响到了不计其数的人。 勾股定理一直是几何学中的明珠充满了无限的魅力。早在很久以前我们的前辈们就已经开始研究勾股锋局滑定理了。 而中国则是发现和研究勾股定理最古老的国家之一。中国古代数学家将直角三角形称为勾股形西周数学家商高曾在《九章算术》中说过“若勾三股四则弦五。腊掘”较短的直角边称为勾另一直角边称为股斜边则称为弦所以勾股定理也称为勾股弦定理。 并且勾股定理又称作毕达哥拉斯定理或毕氏定理。数学公式中常写作 据考证人类对这银腊条定理的认识少说也有4000年并且勾股定理大概共有几百个证明方法也是数学定理中证明方法最多的定理之一
- 答:就是直角三角形原理:直角边平方之和等于第三遍,例如3,4,5肯定是直角三角形三边
问:初二的勾股定理小论文,800字,简单的,急!!!!!
- 答:你自己写吧,抄袭可不好